DOI QR코드

DOI QR Code

Characteristics of Heat Transfer and Chemical Reaction in Reformer Tube for Fuel Reynolds Number and Burner Gas Temperature

개질관 내부 레이놀즈 수와 버너 온도에 따른 열유동 및 반응 특성

  • Han, Jun Hee (Dept. of Mechanical Systems Engineering, Chung-Ang University) ;
  • Yoon, Kee Bong (Dept. of Mechanical Engineering, Chung-Ang University) ;
  • Kim, Ji Yoon (Energy Safety Research Institute of Chung-Ang University) ;
  • Lee, Seong Hyuk (Dept. of Mechanical Engineering, Chung-Ang University)
  • 한준희 (중앙대학교 기계시스템 엔지니어링학과) ;
  • 윤기봉 (중앙대학교 기계공학부) ;
  • 김지윤 (중앙대학교 차세대 에너지안전연구소) ;
  • 이성혁 (중앙대학교 기계공학부)
  • Received : 2015.08.24
  • Accepted : 2015.10.23
  • Published : 2015.10.30

Abstract

The study investigated numerically the heat transfer and chemical reaction characteristics of a methane-steam reforming by using a 3-dimensional computational fluid dynamics (CFD) code (Fluent ver. 16.1). The fuel temperature and its species mole fractions were estimated for various Reynolds number in the reformer tube at different burner temperatures. The catalysts were modeled as the porous medium of nicrome in the reformer tube. We considered radiation effect as well as conduction and convective heat transfer because the methane-steam was reformed at very high temperature condition above 1000 K. For two different Reynolds numbers of 49,000 and 88,000 and the burner temperatures were in the range from 1,100 K to 1,300 K. At a low Reynolds number, the fuel temperature increased, leading to increase in hydrogen reforming. However, fuel temperature and hydrogen reforming decreased because of higher convective heat transfer from relatively low fuel temperature. Moreover, the hydrogen reforming also increased with burner temperature.

본 연구의 목적은 촉매가 삽입된 단일 개질관 내 가스의 주입 속도와 버너의 고온공기 주입온도에 따른 3차원 전산 유체 해석(Fluent ver. 16.1)을 수행하여, 열유동 및 화학반응 특성을 파악하는 것이다. 개질관 내부 촉매는 니크롬 재질의 다공성 영역으로 가정하였다. 메탄-수증기 개질반응은 1000 K 이상의 고온 환경에서 작동하므로 전도, 대류 및 복사를 고려한 복합열전달을 해석했다. 수소 개질량을 비교하기 위한 두 개의 레이놀즈 수는 49,000과 88,000이고, 레이놀즈 수가 88,000인 경우, 고온공기의 온도를 각각 1100 K, 1200 K 및 1300 K로 설정하였다. 수치해석 결과, 레이놀즈 수가 낮을 경우 개질관 내부의 온도가 상승하였으며, 수소 개질량도 증가하였다. 레이놀즈 수가 높을수록 상대적으로 온도가 낮은 가스의 대류 열전달량이 증가하여 개질관 내의 온도는 낮아져 수소 개질량은 감소한다. 그리고 고온 공기의 온도가 높을수록 개질관 내부의 온도가 증가하므로, 수소 개질량도 증가한다.

Keywords

References

  1. A. Demirbas, Biofuels sources, "Biofuels Policy, Biofuel Economy and Global Biofuel Projections, Energy Conversion and Management. Manage., 49, 2106-2116 (2008). https://doi.org/10.1016/j.enconman.2008.02.020
  2. D. L. Hoang, S. H. Chan, and O. L. Ding, "Kinetic and Modelling Study of Methane Steam Reforming over Sulfide Nickel Catalyst on a Gamma Alumina Support", Chemical Engineering Journal, 112, 1-11 (2005). https://doi.org/10.1016/j.cej.2005.06.004
  3. H. S. Roh, D. K. Lee, K. Y. Koo, U. H. Jung, and W. L. Yoon, "Natural gas Steam Reforming for Hydrogen Production over Metal Monolite Catalyst with Efficient Heat-transfer", International Journal of Hydrogen Energy, 35, 1613-1619 (2010) https://doi.org/10.1016/j.ijhydene.2009.12.051
  4. B. T. Schadel, M. Duisberg, and O. Deutschmann, "Steam Reforming of Methane, Ethane, Propane, Butane, and Natural Gas over a Rhodium-based Catalyst", Catalysis Today, 142, 42-51 (2009). https://doi.org/10.1016/j.cattod.2009.01.008
  5. L. Basini, K. Aasberg-Petersen, A. Guarinoni, and M. Ostberg, "Catalytic Partial Oxidation of Natural Gas at Evlevated Pressure and Low Residence Time", Catalysis Today, 64, 21-30 (2001). https://doi.org/10.1016/S0920-5861(00)00505-8
  6. A. Qi, S. Wang, C. Ni, and D. Wu, "Autothermal Reforming of Gasoline on Rh-based Monolithic Catalysts", International Journal of Hydrogen Energy, 32, 981-991 (2007). https://doi.org/10.1016/j.ijhydene.2006.06.072
  7. H. Arbag, S. Yasyerli, N. Yasyerli, and C. Dogu, "Activity and Stability Enhancement of Ni-MCM-41 Catalysts by Rh Incorporation for Hydrogen from Dry Reforming of Methane", International journal of Hydrogen Energy, 35, 2296-2304 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.109
  8. M. Ertan Taskin, CFD simulation of transport and reaction in cylindrical catalst particles, WORCESTER POLYTECHNIC INSTITUTE (2007).
  9. ANSYS FLUENT Theory Guide: Version 13.0, Ansys Inc., Canonsburg, (2010).
  10. D. Spalding, "Mixing and Chemical Reaction in Steady Confined Turbulent Flames", Symposium (International) on Combustion, 13, 649-657, (1971).
  11. S. Ergun, "Fluid flow through packed columns", Chemical engineering progress, 48, (1952).
  12. I. Ziolkowska and D. Ziolkowski, "Fluid flow inside packed beds", Chemical Engineering and Processing: Process Intensification, 23, 137-164, (1988). https://doi.org/10.1016/0255-2701(88)80012-6
  13. Mayu KUROKI, Shinichi OOKAWARA, and Kohei OGAWA, "A High-Fidelity CFD Model of methane steam reforming in a packed bed reactor", Journal of Chemical Engineering of Japan, 42, 73-78, (2009). https://doi.org/10.1252/jcej.08we256
  14. C.-G. Choi, T.-Y. Chung, J.-H. Nam, and D.-H. Shin, "A comparative study for steam-methane reforming reaction analysis model", Transactions of the Korean Society of Mechanical Engineers B, 497-503, (2008).
  15. G. D. Wehinger, E. Thomas, K. Matthias, "Detailed Numerical Simulations of Catalytic Fixed-bed reactors : Heterogeneous dry reforming of Methane", Chemical Engineering Science, 122, 197-209, (2015). https://doi.org/10.1016/j.ces.2014.09.007