• Title/Summary/Keyword: steam flow distribution

Search Result 98, Processing Time 0.024 seconds

The effect of the nozzle exit geometry on the flow characteristics of the free condensing jet

  • Jaewon Myeong;Seungwan Kim;Dehee Kim;Jongtae Kim;Weon Gyu Shin
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2545-2556
    • /
    • 2024
  • In the present study, we investigated the velocity distribution, temperature distribution and condensation characteristics of steam jet issuing from four different orifice nozzles with a Reynolds number of approximately 79,000 using the phase Doppler particle analyzer system and a K-type thermocouple. The steam jet discharged from the orifice nozzle has a wider jet width compared to pipe nozzle because of the vena-contracta which can enhance the mixing of steam jet with the ambient air. Therefore, the orifice jet showed less condensation due to its wideness, resulting in small velocity decay rate and large temperature decay rate due to momentum conservation and decreased latent heat release compared to pipe nozzle, respectively. Also, the wider jet width of the orifice jet resulted in larger velocity and temperature spread rate compared to the pipe jet. In addition, the increase in the aspect ratio of the orifice jet led to more condensation and larger velocity spread rate and temperature spread rate due to both the vena-contracta and axis-switching effect, resulting in the increase of jet entrainment.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

Study on the Characteristics of the Upper Pad Fluttering in a Large Tilting fad Journal Bearing Using a Steam Turbine (증기터빈용 대형 틸팅패드 저어널베어링의 상부패드 Fluttering 특성 연구)

  • Yang, Seong-Heon;Park, Heui-Joo;Park, Chul-Hyun;Kim, Chae-Sil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1022-1027
    • /
    • 2002
  • This paper describes the fluttering characteristics of the upper pad in a tilting pad journal bearing(6-pad, LOP type) using a steam turbine. In order to investigate the phenomena of the upper pad fluttering experimentally, the absolute vibration of the upper pads the relative vibration between bearing and shaft and the circumferential distribution of the film thickness are measured under the different values of supply oil flow rate, shaft speed and bearing load. It can be known that the fluttering mechanism of the upper pads has a tendency of the self-excited vibration from the study of fluttering frequencies and amplitudes with the change of shaft speed. furthermore, it is observed that the incipient upper pad fluttering velocity is increased by the increase of oil supply flow rate and fluttering amplitude of the upper pads is increased by the decrease of the oil flow rate and by the increase of the bearing load.

  • PDF

Computational Fluid Dynamics Analysis of Plate Type Reformer for MCFC (용융탄산염 연료전지용 평판형 개질기 열유동 전산유체역학 해석)

  • Shin, Dong-Hoon;Seo, Hye-Gyung;Lim, Hee-Chun;Lee, Sang-Duk
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.4
    • /
    • pp.403-408
    • /
    • 2006
  • The plate reformer consisting of combustion chamber and reforming chamber for 25 kW MCFC stack has been operated and computational fluid dynamics was applied to estimate reactions and thermal fluid behavior in the reformer. The methane air 2-stage reaction was assumed in the combustion chamber, and three step steam reforming reactions were included in the calculation. Flow uniformity, reaction rate and species distribution, and temperature distribution were analyzed. In particular, temperature distribution was compared with the measurements to show good agreement in the combustion chamber, however, inappropriate agreement in the reformer chamber.

Characteristics for Sludge Removal Nozzle in Steam Generator (증기 발생기 슬러지 제거용 노즐 특성 연구)

  • Lee Sam-Goo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.37-43
    • /
    • 2004
  • Water-jet trajectory visualization and velocity deficits from a high pressurized steam-generator nozzles were experimentally observed. In order to find an optimal nozzle configuration. several parameters affecting plugging and erosion onto the steam generator tube were quantitatively analyzed. For the experiments, a high-pressurized pump (pressure in use: 200 kg/$\textrm{cm}^2$, 15 HP, 11 kW, output flow Q : 301/min) was utilized. Visualization, velocity distribution, and spray growth rate with different nozzle configurations have been mainly focused using a 2-D PDPA system. The results indicated that trajectories along the centerline regardless of their configurations has its potential core region. However, the phenomena from the peripheral part need to be meticulously considered. Accordingly, it is evident that quantitative velocity deficits at the outer region are outstanding due to the aerodynamical drag and entrainment.

A study on the flow charateristics of temperature control valve by pressure compensation (압력 평형식 온도 조절 밸브의 유동특성 연구)

  • Kim, T.-A.;Kim, Youn J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.419-424
    • /
    • 2001
  • TCV(Temperature control valve by pressure compensation) controls temperature constantly, when it is sending steam or high temperature water to heating device of heat exchanger. For designing TCV, the ratio of piston and hole diameters is one of the important design parameters. Numerical analysis is carried out to elucidate the flow characteristics in the TCV with different port areas of cold and hot waters, using the k-$\epsilon$ turbulence model and Cartesian cut-cell method. Numerical results show that the exit flow rate is mainly affected by pressure distribution in the piston.

  • PDF

A numerical study on convective heat transfer characteristics at the vessel surface of the Korean Next Generation Reactor (차세대 원자로 용기내 vessel 내면에서의 대류 열전달특성에 관한 수치해석적 연구)

  • Jung, S.D.;Kim, C.N.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.228-233
    • /
    • 2000
  • The Korean Next Generation Reactor(KNGR) is a Pressurized Water Reactor adopting direct vessel injection(DVI) to optimize the performance of emergency core cooling system(ECCS). In a certain accident, however, pressurized thermal shock(PTS) of the vessel due to the sudden contact with the injected cold water is expected. In this paper, an accident of Main Steam Line Break(MSLB) has been numerically investigated with direct vessel injections and an increased volume flow rate in some cold legs. Using FLUENT code, temperature distributions of the fluid in the downcomer and of reactor vessel including the core region have been calculated, together with the distribution of convective heat transfer coefficient(CHTC) at the cladding surface of the reactor vessel. The result shows that some parts of the core region of the reactor vessel have higher temperature gradient expressing higher thermal stress.

  • PDF

Study on the Characteristics of the Upper Pad Fluttering in a Large Tilting Pad Journal Bearing Using a Steam Turbine (증기터빈용 대형 틸팅패드 저어널베어링의 상부패드 Fluttering 특성 연구)

  • Yang, Seong-Heon;Park, Heui-Joo;Park, Cheol-Hyun;Kim, Chaesil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.399.1-399
    • /
    • 2002
  • This paper describes the fluttering characteristics of the upper pad in a tilting pad journal bearing(6-pad, LOP type) using a steam turbine. In order to investigate the phenomena of the pad fluttering experimentally, the absolute vibration of the upper pads, the relative vibration between the bearing and the shaft and the circumferential distribution of the film thickness are measured under the different values of oil supply flow rate, shaft speed and bearing load. (omitted)

  • PDF

Methodology for Centrifugal Stress Estimation Model Development of Large Steam Turbine Blades (스팀 터빈 블레이드 원심응력 추정을 위한 전산해석 연구)

  • Lee, Byounghak;Park, Jongho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.26-31
    • /
    • 2013
  • Last blades of low-pressure turbine in nuclear power plant are the highly damaged part and always suffered from different types of loadings leading to various stress components, stresses due to centrifugal force and steam flow loading. Especially, centrifugal stress generated by turbine rotation is one of the main problems and more significant than other stresses as they have the greatest effect on total stress. Therefore, this study was performed to obtain the important information for estimation model development of the blade centrifugal stress level and distribution.

NUMERICAL OPTIMIZATION OF TEMPERATURE DISTRIBUTION IN HRSG SYSTEM USING INLET GUIDE VANE (전치 가이드 베인 설치에 따른 열회수 보일러 입구 온도 최적화)

  • Lee, Soo-Yoon;Ahn, Joon;Shin, Seung-Won
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • Diverging channel from gas engine exit to the inlet section of Heat Recovery Steam Generator (HRSG) has been re-designed for 1 MW system. To improve the uniformity in velocity and temperature distribution of existing design(Case A and B), two additional test geometries have been chosen for the numerical simulation. At first, gas burner exit section has been centered to the inlet section of the boiler(Case C) and uniformity in velocity and temperature distribution has been improved considerably. Secondly, the diverging channel length can be further reduced to compact geometry with new guide vane design (Case D and E). Proposed design shows overall improvement in uniformity in velocity and temperature distribution compared to existing one.