DOI QR코드

DOI QR Code

The effect of the nozzle exit geometry on the flow characteristics of the free condensing jet

  • Jaewon Myeong (Department of Mechanical Engineering, Chungnam National University) ;
  • Seungwan Kim (Department of Mechanical Engineering, Chungnam National University) ;
  • Dehee Kim (Korea Atomic Energy Research Institute) ;
  • Jongtae Kim (Korea Atomic Energy Research Institute) ;
  • Weon Gyu Shin (Department of Mechanical Engineering, Chungnam National University)
  • Received : 2023.07.25
  • Accepted : 2024.02.06
  • Published : 2024.07.25

Abstract

In the present study, we investigated the velocity distribution, temperature distribution and condensation characteristics of steam jet issuing from four different orifice nozzles with a Reynolds number of approximately 79,000 using the phase Doppler particle analyzer system and a K-type thermocouple. The steam jet discharged from the orifice nozzle has a wider jet width compared to pipe nozzle because of the vena-contracta which can enhance the mixing of steam jet with the ambient air. Therefore, the orifice jet showed less condensation due to its wideness, resulting in small velocity decay rate and large temperature decay rate due to momentum conservation and decreased latent heat release compared to pipe nozzle, respectively. Also, the wider jet width of the orifice jet resulted in larger velocity and temperature spread rate compared to the pipe jet. In addition, the increase in the aspect ratio of the orifice jet led to more condensation and larger velocity spread rate and temperature spread rate due to both the vena-contracta and axis-switching effect, resulting in the increase of jet entrainment.

Keywords

Acknowledgement

This work was supported by Chungnam National University.

References

  1. I. Gorbatenko, A. Nicolle, M. Silva, H.G. Im, S.M. Sarathy, The impact of gasoline formulation on turbulent jet ignition, Fuel 324 (2022) 124373.
  2. G. Gentz, M. Gholamisheeri, E. Toulson, A study of a turbulent jet ignition system fueled with iso-octane: pressure trace analysis and combustion visualization, Appl. Energy 189 (2017) 385-394. https://doi.org/10.1016/j.apenergy.2016.12.055
  3. Y.-S. Kim, Y.-J. Youn, Experimental study of turbulent jet induced by steam jet condensation through a hole in a water tank, Int. Commun. Heat Mass Tran. 35 (1) (2008) 21-29. https://doi.org/10.1016/j.icheatmasstransfer.2007.05.014
  4. J. Cha, T. Kim, S. Lim, H. Lee, W.G. Shin, Experimental study on the condensation and heat transfer of impinging steam jet on the water surface, Ann. Nucl. Energy 133 (2019) 458-468. https://doi.org/10.1016/j.anucene.2019.05.052
  5. J. Cho, J.H. Park, D.-S. Kim, H.-G. Lim, Quantification of LOCA core damage frequency based on thermal-hydraulics analysis, Nucl. Eng. Des. 315 (2017) 77-92. https://doi.org/10.1016/j.nucengdes.2017.02.023
  6. M. Dehjourian, R. Sayareh, M. Rahgoshay, G. Jahanfarnia, A.S. Shirani, Investigation of a hydrogen mitigation system during large break loss-of-coolant accident for a two-loop pressurized water reactor, Nucl. Eng. Technol. 48 (5) (2016) 1174-1183. https://doi.org/10.1016/j.net.2016.04.002
  7. F. Erbacher, S. Leistikow, Zircaloy fuel cladding behavior in a loss-of-coolant accident: a review, Zirconium in the Nuclear Industry ASTM STP 939 (1987) 451.
  8. J. Kim, S.-W. Hong, Analysis of hydrogen flame acceleration in APR1400 containment by coupling hydrogen distribution and combustion analysis codes, Prog. Nucl. Energy 78 (2015) 101-109. https://doi.org/10.1016/j.pnucene.2014.09.003
  9. S. Shanthanu, S. Raghuram, V. Raghavan, Transient evaporation of moving water droplets in steam-hydrogen-air environment, Int. J. Heat Mass Tran. 64 (2013) 536-546. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.066
  10. J. Kim, S.-W. Hong, S.-B. Kim, H.-D. Kim, Three-dimensional behaviors of the hydrogen and steam in the APR1400 containment during a hypothetical loss of feed water accident, Ann. Nucl. Energy 34 (12) (2007) 992-1001. https://doi.org/10.1016/j.anucene.2007.05.003
  11. I. Petracci, M. Angelino, I. Di Venuta, A. Boghi, F. Gori, Experiments and numerical simulations of mass transfer and flow evolution in transient rectangular free jet of air, Int. Commun. Heat Mass Tran. 108 (2019) 104290.
  12. M. Angelino, I. Di Venuta, A. Boghi, I. Petracci, F. Gori, Further results on the mean mass transfer and fluid flow in a turbulent round jet, Int. Commun. Heat Mass Tran. 141 (2023) 106568.
  13. S. Oerlemans, R. Badie, M. Van Dongen, An experimental and numerical study into turbulent condensing steam jets in air, Exp. Fluid 31 (1) (2001) 74-83. https://doi.org/10.1007/s003480000261
  14. S. Baskaya, A. Gilchrist, S. Fraser, The radial spread and axial decay of temperature in turbulent condensing jets, Int. Commun. Heat Mass Tran. 24 (4) (1997) 465-474. https://doi.org/10.1016/S0735-1933(97)00032-8
  15. S. Baskaya, A. Gilchrist, S. Fraser, Mixing characteristics of turbulent water vapour jets measured using an isokinetic sampling probe, Exp. Fluid 24 (1998) 27-38. https://doi.org/10.1007/s003480050147
  16. S. Lim, J. Cha, H. Lee, T. Kim, W.G. Shin, Understanding the condensation process of turbulent steam jet using the PDPA system, Int. J. Multiphas. Flow 98 (2018) 168-181. https://doi.org/10.1016/j.ijmultiphaseflow.2017.09.007
  17. D. Kim, J. Kim, S. Cho, K. Cho, W.G. Shin, Experimental and numerical study of a condensing steam jet, J. Nucl. Sci. Technol. 59 (9) (2022) 1089-1106. https://doi.org/10.1080/00223131.2022.2030258
  18. D. Chong, Q. Zhao, F. Yuan, W. Wang, W. Chen, J. Yan, Research on the steam jet length with different nozzle structures, Exp. Therm. Fluid Sci. 64 (2015) 134-141. https://doi.org/10.1016/j.expthermflusci.2015.02.015
  19. Y. Choo, C. Song, PIV measurements of turbulent jet and pool mixing produced by a steam jet discharge in a subcooled water pool, Nucl. Eng. Des. 240 (9) (2010) 2215-2224. https://doi.org/10.1016/j.nucengdes.2009.11.028
  20. J. Yan, X. Wu, D. Chong, Experimental study on pressure and temperature distributions for low mass flux steam jet in subcooled water, Sci. China Technol. Sci. 52 (2009) 1493-1501. https://doi.org/10.1007/s11431-009-0177-2
  21. W. Li, J. Wang, Z. Sun, J. Liu, Z. Meng, Experimental investigation on thermal stratification induced by steam-air mixture vertical injection with shallow submergence depth, Prog. Nucl. Energy 115 (2019) 52-61. https://doi.org/10.1016/j.pnucene.2019.03.034
  22. X. Liu, M. Yu, W. Li, P. Yu, Z. Meng, Characteristics of fluid and pressure oscillations induced by steam injected through a vertical blow down pipe under different vessel pressures, Ann. Nucl. Energy 173 (2022) 109123.
  23. X. Liu, M. Yu, W. Li, P. Yu, Z. Meng, Z. Sun, N. Zhang, M. Ding, Experimental investigation of the pressure oscillations induced by subsonic steam jets under different vessel pressures, Nucl. Eng. Des. 395 (2022) 111867.
  24. J. Cha, S. Lim, T. Kim, W.G. Shin, The effect of the Reynolds number on the velocity and temperature distributions of a turbulent condensing jet, Int. J. Heat Fluid Flow 67 (2017) 125-132. https://doi.org/10.1016/j.ijheatfluidflow.2017.08.001
  25. S.-J. Lee, S.-J. Baek, The effect of aspect ratio on the near-field turbulent structure of elliptic jets, Flow Meas. Instrum. 5 (3) (1994) 170-180. https://doi.org/10.1016/0955-5986(94)90016-7
  26. F. Hussain, H.S. Husain, Elliptic jets. Part 1. Characteristics of unexcited and excited jets, J. Fluid Mech. 208 (1989) 257-320. https://doi.org/10.1017/S0022112089002843
  27. J. Mi, G. Nathan, Statistical properties of turbulent free jets issuing from nine differently-shaped nozzles, Flow, Turbul. Combust. 84 (2010) 583-606. https://doi.org/10.1007/s10494-009-9240-0
  28. J. Mi, R. Deo, G. Nathan, Characterization of turbulent jets from high-aspect-ratio rectangular nozzles, Phys. Fluids 17 (6) (2005) 068102.
  29. S.S. Aleyasin, M.F. Tachie, M. Koupriyanov, Statistical properties of round, square, and elliptic jets at low and moderate Reynolds numbers, J. Fluid Eng. 139 (10) (2017) 101206.
  30. M. Thring, M. Newby, Combustion length of enclosed turbulent jet flames, in: Symposium (International) on Combustion, Elsevier, 1953, pp. 789-796.
  31. H.-E. Albrecht, N. Damaschke, M. Borys, C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques, Springer Science & Business Media, 2013.
  32. B. Esposito, M. Marrazzo, Application of PDPA System with Different Optical Configuration to the IWT Calibration, 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007, p. 1094.
  33. W. Quinn, Upstream nozzle shaping effects on near field flow in round turbulent free jets, Eur. J. Mech. B Fluid 25 (3) (2006) 279-301. https://doi.org/10.1016/j.euromechflu.2005.10.002
  34. G. Xu, R. Antonia, Effect of different initial conditions on a turbulent round free jet, Exp. Fluid 33 (5) (2002) 677-683. https://doi.org/10.1007/s00348-002-0523-7
  35. J. Mi, G. Nathan, D. Nobes, Mixing characteristics of axisymmetric free jets from a contoured nozzle, an orifice plate and a pipe, J. Fluid Eng. 123 (4) (2001) 878-883. https://doi.org/10.1115/1.1412460
  36. P. Nejatipour, B. Khorsandi, Effect of nozzle geometry on the dynamics and mixing of self-similar turbulent jets, Water Sci. Technol. 84 (12) (2021) 3907-3915. https://doi.org/10.2166/wst.2021.483
  37. W. Quinn, Experimental study of the near field and transition region of a free jet issuing from a sharp-edged elliptic orifice plate, Eur. J. Mech. B Fluid 26 (4) (2007) 583-614.  https://doi.org/10.1016/j.euromechflu.2006.10.005