Acknowledgement
This work was supported by Chungnam National University.
References
- I. Gorbatenko, A. Nicolle, M. Silva, H.G. Im, S.M. Sarathy, The impact of gasoline formulation on turbulent jet ignition, Fuel 324 (2022) 124373.
- G. Gentz, M. Gholamisheeri, E. Toulson, A study of a turbulent jet ignition system fueled with iso-octane: pressure trace analysis and combustion visualization, Appl. Energy 189 (2017) 385-394. https://doi.org/10.1016/j.apenergy.2016.12.055
- Y.-S. Kim, Y.-J. Youn, Experimental study of turbulent jet induced by steam jet condensation through a hole in a water tank, Int. Commun. Heat Mass Tran. 35 (1) (2008) 21-29. https://doi.org/10.1016/j.icheatmasstransfer.2007.05.014
- J. Cha, T. Kim, S. Lim, H. Lee, W.G. Shin, Experimental study on the condensation and heat transfer of impinging steam jet on the water surface, Ann. Nucl. Energy 133 (2019) 458-468. https://doi.org/10.1016/j.anucene.2019.05.052
- J. Cho, J.H. Park, D.-S. Kim, H.-G. Lim, Quantification of LOCA core damage frequency based on thermal-hydraulics analysis, Nucl. Eng. Des. 315 (2017) 77-92. https://doi.org/10.1016/j.nucengdes.2017.02.023
- M. Dehjourian, R. Sayareh, M. Rahgoshay, G. Jahanfarnia, A.S. Shirani, Investigation of a hydrogen mitigation system during large break loss-of-coolant accident for a two-loop pressurized water reactor, Nucl. Eng. Technol. 48 (5) (2016) 1174-1183. https://doi.org/10.1016/j.net.2016.04.002
- F. Erbacher, S. Leistikow, Zircaloy fuel cladding behavior in a loss-of-coolant accident: a review, Zirconium in the Nuclear Industry ASTM STP 939 (1987) 451.
- J. Kim, S.-W. Hong, Analysis of hydrogen flame acceleration in APR1400 containment by coupling hydrogen distribution and combustion analysis codes, Prog. Nucl. Energy 78 (2015) 101-109. https://doi.org/10.1016/j.pnucene.2014.09.003
- S. Shanthanu, S. Raghuram, V. Raghavan, Transient evaporation of moving water droplets in steam-hydrogen-air environment, Int. J. Heat Mass Tran. 64 (2013) 536-546. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.066
- J. Kim, S.-W. Hong, S.-B. Kim, H.-D. Kim, Three-dimensional behaviors of the hydrogen and steam in the APR1400 containment during a hypothetical loss of feed water accident, Ann. Nucl. Energy 34 (12) (2007) 992-1001. https://doi.org/10.1016/j.anucene.2007.05.003
- I. Petracci, M. Angelino, I. Di Venuta, A. Boghi, F. Gori, Experiments and numerical simulations of mass transfer and flow evolution in transient rectangular free jet of air, Int. Commun. Heat Mass Tran. 108 (2019) 104290.
- M. Angelino, I. Di Venuta, A. Boghi, I. Petracci, F. Gori, Further results on the mean mass transfer and fluid flow in a turbulent round jet, Int. Commun. Heat Mass Tran. 141 (2023) 106568.
- S. Oerlemans, R. Badie, M. Van Dongen, An experimental and numerical study into turbulent condensing steam jets in air, Exp. Fluid 31 (1) (2001) 74-83. https://doi.org/10.1007/s003480000261
- S. Baskaya, A. Gilchrist, S. Fraser, The radial spread and axial decay of temperature in turbulent condensing jets, Int. Commun. Heat Mass Tran. 24 (4) (1997) 465-474. https://doi.org/10.1016/S0735-1933(97)00032-8
- S. Baskaya, A. Gilchrist, S. Fraser, Mixing characteristics of turbulent water vapour jets measured using an isokinetic sampling probe, Exp. Fluid 24 (1998) 27-38. https://doi.org/10.1007/s003480050147
- S. Lim, J. Cha, H. Lee, T. Kim, W.G. Shin, Understanding the condensation process of turbulent steam jet using the PDPA system, Int. J. Multiphas. Flow 98 (2018) 168-181. https://doi.org/10.1016/j.ijmultiphaseflow.2017.09.007
- D. Kim, J. Kim, S. Cho, K. Cho, W.G. Shin, Experimental and numerical study of a condensing steam jet, J. Nucl. Sci. Technol. 59 (9) (2022) 1089-1106. https://doi.org/10.1080/00223131.2022.2030258
- D. Chong, Q. Zhao, F. Yuan, W. Wang, W. Chen, J. Yan, Research on the steam jet length with different nozzle structures, Exp. Therm. Fluid Sci. 64 (2015) 134-141. https://doi.org/10.1016/j.expthermflusci.2015.02.015
- Y. Choo, C. Song, PIV measurements of turbulent jet and pool mixing produced by a steam jet discharge in a subcooled water pool, Nucl. Eng. Des. 240 (9) (2010) 2215-2224. https://doi.org/10.1016/j.nucengdes.2009.11.028
- J. Yan, X. Wu, D. Chong, Experimental study on pressure and temperature distributions for low mass flux steam jet in subcooled water, Sci. China Technol. Sci. 52 (2009) 1493-1501. https://doi.org/10.1007/s11431-009-0177-2
- W. Li, J. Wang, Z. Sun, J. Liu, Z. Meng, Experimental investigation on thermal stratification induced by steam-air mixture vertical injection with shallow submergence depth, Prog. Nucl. Energy 115 (2019) 52-61. https://doi.org/10.1016/j.pnucene.2019.03.034
- X. Liu, M. Yu, W. Li, P. Yu, Z. Meng, Characteristics of fluid and pressure oscillations induced by steam injected through a vertical blow down pipe under different vessel pressures, Ann. Nucl. Energy 173 (2022) 109123.
- X. Liu, M. Yu, W. Li, P. Yu, Z. Meng, Z. Sun, N. Zhang, M. Ding, Experimental investigation of the pressure oscillations induced by subsonic steam jets under different vessel pressures, Nucl. Eng. Des. 395 (2022) 111867.
- J. Cha, S. Lim, T. Kim, W.G. Shin, The effect of the Reynolds number on the velocity and temperature distributions of a turbulent condensing jet, Int. J. Heat Fluid Flow 67 (2017) 125-132. https://doi.org/10.1016/j.ijheatfluidflow.2017.08.001
- S.-J. Lee, S.-J. Baek, The effect of aspect ratio on the near-field turbulent structure of elliptic jets, Flow Meas. Instrum. 5 (3) (1994) 170-180. https://doi.org/10.1016/0955-5986(94)90016-7
- F. Hussain, H.S. Husain, Elliptic jets. Part 1. Characteristics of unexcited and excited jets, J. Fluid Mech. 208 (1989) 257-320. https://doi.org/10.1017/S0022112089002843
- J. Mi, G. Nathan, Statistical properties of turbulent free jets issuing from nine differently-shaped nozzles, Flow, Turbul. Combust. 84 (2010) 583-606. https://doi.org/10.1007/s10494-009-9240-0
- J. Mi, R. Deo, G. Nathan, Characterization of turbulent jets from high-aspect-ratio rectangular nozzles, Phys. Fluids 17 (6) (2005) 068102.
- S.S. Aleyasin, M.F. Tachie, M. Koupriyanov, Statistical properties of round, square, and elliptic jets at low and moderate Reynolds numbers, J. Fluid Eng. 139 (10) (2017) 101206.
- M. Thring, M. Newby, Combustion length of enclosed turbulent jet flames, in: Symposium (International) on Combustion, Elsevier, 1953, pp. 789-796.
- H.-E. Albrecht, N. Damaschke, M. Borys, C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques, Springer Science & Business Media, 2013.
- B. Esposito, M. Marrazzo, Application of PDPA System with Different Optical Configuration to the IWT Calibration, 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007, p. 1094.
- W. Quinn, Upstream nozzle shaping effects on near field flow in round turbulent free jets, Eur. J. Mech. B Fluid 25 (3) (2006) 279-301. https://doi.org/10.1016/j.euromechflu.2005.10.002
- G. Xu, R. Antonia, Effect of different initial conditions on a turbulent round free jet, Exp. Fluid 33 (5) (2002) 677-683. https://doi.org/10.1007/s00348-002-0523-7
- J. Mi, G. Nathan, D. Nobes, Mixing characteristics of axisymmetric free jets from a contoured nozzle, an orifice plate and a pipe, J. Fluid Eng. 123 (4) (2001) 878-883. https://doi.org/10.1115/1.1412460
- P. Nejatipour, B. Khorsandi, Effect of nozzle geometry on the dynamics and mixing of self-similar turbulent jets, Water Sci. Technol. 84 (12) (2021) 3907-3915. https://doi.org/10.2166/wst.2021.483
- W. Quinn, Experimental study of the near field and transition region of a free jet issuing from a sharp-edged elliptic orifice plate, Eur. J. Mech. B Fluid 26 (4) (2007) 583-614. https://doi.org/10.1016/j.euromechflu.2006.10.005