• Title/Summary/Keyword: steady state Nyquist theorem

Search Result 4, Processing Time 0.041 seconds

Verification of the steady-state Nyquist theorem by Monte-Carlo method in n-i-n structures (N-I-N 구조에서 Monte-Carlo 방법에 의한 steady-state Nyquist 정리의 검증)

  • 이기영;모경구;민홍식;박영준
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.8
    • /
    • pp.63-71
    • /
    • 1993
  • To verify validity of the steady-state Nyquist theorem and the steady-state Nyquist theorem with hot carrier effects in semiconductor devices, we calculate thermal noise in n-i-n structures using both the steady-state Nyquist theorem and the Monte-Carlo method, and compare the results from these two-methods. When the carrier temperature is not far from the lattice temperature, the results from both methods agree with each other very well, but in the hot carrier regime there are some discrepancies. Our results support the argument that for MOSFETs and MESFETs operating in the linear region, the channel thermal noise should be explained by the steady-state Nyquist theorem rather than by the existing theories.

  • PDF

Experimental verification of steady-state nyquist theorem in MOSFETs (MOSFET에서 Steady-State Nyquist 정리의 실험적 검증)

  • 송두헌;민홍식;박영준
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.114-118
    • /
    • 1994
  • To resolve thd discrepancy between the existing channel thermal noise theory of MOSFETs and a new theory called the stady-state Nyquist theorem, we have measured the channel thermal noise of specially designed MOSFETs with both uniform and nonuniform channels. the experimental results clearly show that the correct theory of the channel thermal nois in MOSFETs should be the steady-state Nyquist theorem.

  • PDF

Modeling of the Minimum nNise Figure and the Optimum Source Impedance of FETs using the Steady-state Nyquist Theorem for Multi-Terminal Semiconductor Devices (다단자 반도체 소자에서의 steady-state Nyquist 정리를 이용한 FET의 회소 잡음 지수 및 최적 소오스 임피던스 모델링)

  • 이정배;민홍식;박영준
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.110-117
    • /
    • 1995
  • New formulas for the minimum noise figure and the optimum source impedance of microwave FETs are derived using the noise equivalent circuits obtained from the steady-state Nyquist theorem for multi-terminal semiconductor devices. The derived formulas manifest the relationships between the noise sources and the physical parameters of a noise equivalent circuit. Furthermore the formulas can explain the effect of gate leakage current on the minimum noise figure and the optimum source impedance. comparisons with the published experimental data confirm the validity and usability of our formula.

  • PDF

Investigation of the existing thermal noise theories for field-effect transistors using the monte-carlo method and the generalized ramo-shockley theorem (Monte-carlo 방법과 일반화된 ramo-shockley 정리를 통한 FET 열잡음 이론의 검증)

  • 모경구;민홍식;박영준
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.10
    • /
    • pp.107-114
    • /
    • 1996
  • Monte carlo method is especially a useful method for the analysis of thermal noise of semiconductor devices since the time dependence of microscopic details is simulated directly. Recently, a mthod for the calculation of the instantaneous currents of 2-dimensional devices, which is numerically more accurate than the conventional method, has been proposed using the generalized ramo-shockley theorem. Using this mehtod we investage the validity of the existing thermal noise theories of field-effect transistors. First, the 1-dimensional analysis of thermal noise theories of field-effect transistors. First, the 1-dimensional analysis of thermal noise theories of field-effect transistors. First, the 1-dimensional analysis of thermal noise using ramo-shockley theorem is shown to be applicable to 2 dimensional devices if the frequency of interest is low enough. The correlation between electrons in different regions of th echannel is shown not to be negligible. And we also obtian the spatial map of the noise in the channel region. By doing so, we show that the steady state nyquist theorem is the correct theory rather than the theory by van der ziel et.al.

  • PDF