• Title/Summary/Keyword: steady state

Search Result 5,367, Processing Time 0.027 seconds

Minimization of Inspection Cost in a BLU Inspection System Using a Steady-State Flow Analysis

  • Yang, Moon-Hee;Kim, Seung-Hyun
    • Management Science and Financial Engineering
    • /
    • v.15 no.2
    • /
    • pp.53-68
    • /
    • 2009
  • In this paper, we address a problem for minimizing the number of items inspected in a back-light-unit (BLU) inspection system, which includes a K-stage inspection system, a source inspection shop, and a re-inspection shop. In order to formulate our objective, we make a steady-state flow analysis between nodes (or shops), and derive the steady-state amount of flows between nodes and defective rates by solving a nonlinear balance equation. We provide an enumeration method for determining an optimal value of K which minimizes the number of items inspected. Our methodology could be applied and extended to similar situations with slight modification.

Determining the flow curves for an inverse ferrofluid

  • Ekwebelam, C.C.;See, H.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2008
  • An inverse ferrofluid composed of micron sized polymethylmethacrylate particles dispersed in ferrofluid was used to investigate the effects of test duration times on determining the flow curves of these materials under constant magnetic field. The results showed that flow curves determined using low duration times were most likely not measuring the steady state rheological response. However, at longer duration times, which are expected to correspond more to steady state behaviour, we noticed the occurrence of plateau and decreasing flow curves in the shear rate range of $0.004\;s^{-1}$ to ${\sim}20\;s^{-1}$, which suggest the presence of nonhomogeneities and shear localization in the material. This behaviour was also reflected in the steady state results from shear start up tests performed over the same range of shear rates. The results indicate that care is required when interpreting flow curves obtained for inverse ferrofluids.

Measuring Thermal Conductivity of Nanofluids by Steady State Method (정상상태 방법을 이용한 나노유체의 열전도율 측정)

  • Lee, Shin-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.898-904
    • /
    • 2006
  • A new method measuring thermal conductivity of fluids is proposed in this research. It is based on the steady state heat transfer from a hot central cylinder to a cold outer cylinder located concentrically. This method guarantees more stable measurement than conventional THM(transient hot-wire method) due to its simplicity of theoretical principle. Measurements was made for the three nanofluid samples with different particle concentration of pure, 2% and 4%. Nanofluids are made by mixing the pure transformer oil with AlN nano particles. Design of the sensor module and experimental procedures are explained and comparison of the measuring data between present method and THM was made in detail.

A Study on the Effects of Suspension Design Parameters on Cornering Performances of a Vehicle (차량의 선회성능에 미치는 현가장치 설계인자의 영향에 관한 연구)

  • 이장무;윤중락;강주석;정종혁;탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.27-37
    • /
    • 1996
  • In this paper the effects of suspension design parameters on the steady-state cornering performance of vehicles are studied. To investigate the understeer characteristics of vehicles, steady-state cornering equatons are derived from a two-track model which is expanded from a simple one track model. The effects of the suspension design parameters as well as those of lateral load transfer are taken into consideration. To verify the equation, a skid pad test was carried out with a domestic passenger car. The design parameters of the vehicle are measured using a Suspension Parameter Measuring Device(SPMD). Based on these results, parameter studies are carried out to determine the effect of design parameters on the cornering performance of a vehicle, both in low and high acceleration region.

  • PDF

Applying Steady State Analysis to the Study of Mitten Crabs in Jichun, Kum River (동적 균형상태를 중심으로 본 금강 지천의 참게자원 분석)

  • Jeon, Dae-Uk;Jeong, Hoi-Seong
    • Korean System Dynamics Review
    • /
    • v.11 no.1
    • /
    • pp.27-57
    • /
    • 2010
  • This article deals with an ecological-economic analysis of the 'Pasture Project of Kum River', which is the farming plan of mitten crabs using Jichun, a stream of the River Kum where the natural propagation of mitten crabs are blocked because of the estuary dam constructed in 1990. Toward analyzing the ecological and economic effects of the crab releasing and harvesting activities in Jichun, a two-stage cohort model of population dynamics with cannibalistic behaviors and density restrictions in biomathematics is adopted, despite of the current infertility in Kum, considering the opportunity of establishing dam fishways in the near future. This study moreover presents a method of parameter estimation especially with assuming a steady state of the ecosystem, and performs various analyses such as the risk measurement of climate change and the economic value of such fishways.

  • PDF

EDISON Co-rotational Plane beam-Dynamic tip load를 이용한 가진주파수 변화에 따른 외팔보의 자유단 진동 연구

  • Park, Cheol-U;Ju, Hyeon-Sik
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.246-250
    • /
    • 2015
  • In this paper, Timoshenko and Euler-Bernoulli beam theories(EB-beam) are used, and Fast Fourier Transformation(FFT) analysis is then employed to extract their natural frequencies using both analytical approach and Co-rotational plane beam(CR-beam) EDISON program. EB-beam is used to analyze a spring-mass system with a single degree of freedom. Sinusoidal force with various frequencies and constant magnitude are applied to tip of each beam. After the oscillatory tip response is observed in EB-beam, it decreases and finally converges to the so-called 'steady-state.' The decreasing rate of the tip deflection with respect to time is reduced when the forcing frequency is increased. Although the tip deflection is found to be independent of the excitation frequency, it turns out that time to reach the steady state response is dependent on the forcing frequency.

  • PDF

Steady-State Performances Analysis of a Tilting-Pad Gas Bearing (틸팅 패드 기체베어링의 정상상태 성능해석)

  • Kwon, Tae-Kyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.2 s.15
    • /
    • pp.43-49
    • /
    • 2002
  • In this paper, the steady-state performances analysis of a tilting pad gas bearing(TPGB) we analyzed by using finite element method for compressible Reynolds' equation. TPGB is used in a high-expansion-ratio expander running at a speed of 230,000 rpm. In order to solve the nonlinear finite element equations, the Newton-Raphson method is applied. The variations of the loading capacity, friction force and tilting angle of a single pad v.s. eccentricity direction of eccentricity and bearing number are investigated. The condition for the equilibrium of a pad, which is important for safe working of the bearing, is stated. The performances of the three pad bearing such as loading capacity, friction moment are predicted.

Analysis of the steady state and transient characteristics of a multi-type refrigeration system (멀티형 냉동 시스템의 정상상태 및 과도응답 특성 해석)

  • Lee, Gil-Bong;Yoo, Keun-Joong;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.439-444
    • /
    • 2005
  • Steady state simulation and dynamic simulation were performed to analyze the operational characteristics of a multi-type refrigeration system, Fully distributed model was adopted to simulate the steady state and transient responses of the system. The main aim was to see the effect of one indoor unit on the other unit. Numerical simulations were carried out for various operation conditions of an indoor unit - secondary fluid inlet temperature, mass flow rate and expansion valve opening. The results showed that the inlet temperature and mass flow rate of the secondary fluid of one indoor unit had minor effect on the operation of the other unit. However, the opening of the expansion valve had significant effect on the performance of the other unit.

  • PDF

Ecohydrologic Analysis on Soil Water and Plant Water Stress : Focus on Derivation and Application of Stochastic Model (토양수분과 식생의 물 압박에 대한 생태수문학적 해석 : 추계학적 모형의 유도와 적용을 중심으로)

  • Han, Suhee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.99-106
    • /
    • 2008
  • With globally increasing interests in climate-soil-vegetation system, a new stochastic model of soil water and plant water stress is derived for better understanding of the soil water and plant water stress dynamics and their role in water-controlled ecosystem. The steady-state assumption is used for simplifying the equations. The derived model is simple yet realistic that it can account for the essential features of the system. The model represents the general characteristics of rainfall, soil, and vegetation; i.e. the soil moisture constitutes the decrease form of the steady-state and the plant water stress becomes increasing with the steady state when the rainfall is decreased. With this model, further deep study for the effects of soil water and plant water stress on the system will be accomplished.

Mechanical Loss Model for a Metal Belt CVT (금속벨트 CVT 동력전달 손실모델)

  • Ryu, Wan-Sik;Kim, Pil-Gu;Kim, Hyun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.81-87
    • /
    • 2006
  • In this paper, the belt-pulley mechanical loss is investigated. A bondgraph model for the mechanical loss is developed from the viewpoint of the power flow by assuming that all power losses are attributed to the torque loss. The mechanical loss model consists of transient and steady state part. The coefficients of the power loss model are obtained from the experiments. It is found from the simulations and experiments that the steady state loss depends on the line pressure, input torque and rotational speed while the transient loss depends on the rotational speed, shift speed and the inertial torque.