• Title/Summary/Keyword: stay cable

Search Result 151, Processing Time 0.028 seconds

Wind-tunnel study of wake galloping of parallel cables on cable-stayed bridges and its suppression

  • Li, Yongle;Wu, Mengxue;Chen, Xinzhong;Wang, Tao;Liao, Haili
    • Wind and Structures
    • /
    • v.16 no.3
    • /
    • pp.249-261
    • /
    • 2013
  • Flexible stay cables on cable-stayed bridges are three-dimensional. They sag and flex in the complex wind environment, which is a different situation to ideal rigid cylinders in two-dimensional wind flow. Aerodynamic interference and the response characteristics of wake galloping of full-scale parallel cables are potentially different due to three-dimensional flows around cables. This study presents a comprehensive wind tunnel investigation of wake galloping of parallel stay cables using three-dimensional aeroelastic cable models. The wind tunnel study focuses on the large spacing instability range, addressing the effects of cable separation, wind yaw angle, and wind angle of attack on wake galloping response. To investigate the effectiveness of vibration suppression measures, wind tunnel studies on the transversely connected cable systems for two types of connections (flexibility and rigidity) at two positions (mid-span and quarter-span) were also conducted. This experimental study provides useful insights for better understanding the characteristics of wake galloping that will help in establishing a guideline for the wind-resistant design of the cable system on cable-stayed bridges.

Development and Performance Experiment of Iso-tensioning System using Electrical Resistance Loadcell (전기저항식 로드셀을 이용한 균등긴장시스템 개발 및 성능실험)

  • Park, Won-Tae;Chun, Kyoung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.220-226
    • /
    • 2016
  • Because MS(Multi-Strand) cables consist of many strands, a jacking force is applied to each strand one by one for cable construction. All strands should have an equal tensile force when the last one is wedged. This is the core technology for MS iso-tensioning. In this study, a new MS cable iso-tensioning system was developed for controlling and jacking the high-strength strands, with an ultimate tensile strength of 2,200MPa, for a stay cable of extra-dosed/cable-stayed bridges. The newly developed iso-tensioning system consists of electrical resistance load cells, hydraulic jacking devices, hydraulic pumps, and integrated controllers. Moreover, it is embedded with an algorithm that can control and predict the variations in tensile forces of the Master and Slave strands in real time. Actual experiments were carried out to verify the function and performance of the newly developed system. This system was applied successfully to the stay cable construction of 2nd Tae-in extra-dosed bridge in Gwangyang.

Cable vibration control with a semiactive MR damper-numerical simulation and experimental verification

  • Wu, W.J.;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.611-623
    • /
    • 2010
  • Excessive stay cable vibrations can cause severe problems for cable-stayed bridges. In this paper a semiactive Magnetorheological (MR) damper is investigated to reduce cable vibrations. The control-oriented cable-damper model is first established; a computer simulation for the cable-damper system is carried out; and finally a MR damper is experimentally used to reduce the cable vibration in a laboratory environment using a semiactive control algorithm. Both the simulation and experimental results show that the semiactive MR damper achieves better control results than the corresponding passive damper.

Rain-wind induced vibration of inclined stay cables -Part II: Mechanical modeling and parameter characterisation

  • Cosentino, Nicola;Flamand, Olivier;Ceccoli, Claudio
    • Wind and Structures
    • /
    • v.6 no.6
    • /
    • pp.485-498
    • /
    • 2003
  • This paper presents a mechanical model of Rain-Wind Induced Vibration (RWIV) of stay cables. It is based on the physical interpretation of the phenomenon as given in Cosentino, et al. (2003, referred as Part I). The model takes into account all the main forces acting on cable, on the upper water rivulet (responsible of the excitation) and the cable-rivulet interaction. It is a simplified (cable cross-sectional and deterministic) representation of the actual (stochastic and three-dimensional) phenomenon. The cable is represented by its cross section and it is subjected to mechanical and aerodynamic (considering the rivulet influence) forces. The rivulet is supposed to oscillate along the cable circumference and it is subjected to inertial and gravity forces, pressure gradients and air-water-cable frictions. The model parameters are calibrated by fitting with experimental results. In order to validate the proposed model and its physical basis, different conditions (wind speed and direction, cable frequency, etc.) have been numerically investigated. The results, which are in very good agreement with the RWIV field observations, confirm the validity of the method and its engineering applicability (to evaluate the RWIV sensitivity of new stays or to retrofit the existing ones). Nevertheless, the practical use of the model probably requires a more accurate calibration of some parameters through new and specifically oriented wind tunnel tests.

MR damping system for mitigating wind-rain induced vibration on Dongting Lake Cable-Stayed Bridge

  • Chen, Z.Q.;Wang, X.Y.;Ko, J.M.;Ni, Y.Q.;Spencer, B.F.;Yang, G.;Hu, J.H.
    • Wind and Structures
    • /
    • v.7 no.5
    • /
    • pp.293-304
    • /
    • 2004
  • The Dongting Lake Bridge is a cable-stayed bridge crossing the Dongting Lake where it meets the Yangtze River in southern central China. Several intensive wind-rain induced vibrations had been observed since its open to traffic in 1999. To investigate the possibility of using MR damping systems to reduce cable vibration, a series of field tests were conducted. Based on the promising research results, MR damping system was installed on the longest 156 stay cables of Dongting Lake Bridge in June 2002, making it the worlds first application of MR dampers on cable-stayed bridge to suppress the wind-rain induced cable vibration. As a visible and permanent aspect of the bridge, the MR damping system must be aesthetically pleasing, reliable, durable, easy to maintain, as well as effective in vibration mitigation. Substantial work was done to meet these requirements. This paper describes field tests and the implementation of MR damping systems for cable vibration reduction. Three-years reliable service of this system proves its durability.

Large eddy simulation of flow around a stay cable with an artificial upper rivulet

  • Zhao, Yan;Du, Xiaoqing;Gu, Ming;Yang, Xiao;Li, Junjun;He, Ping
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.215-229
    • /
    • 2018
  • The appearance of a rivulet at the upper surface of a stay cable is responsible for rain-wind-induced vibration (RWIV) of cables of cable-stayed bridges. However, the formation mechanism of the upper rivulet and its aerodynamic effects on the stay cable has not been fully understood. Large eddy simulation (LES) method is used to investigate flow around and aerodynamics of a circular cylinder with an upper rivulet at a Reynolds number of 140,000. Results show that the mean lift coefficients of the circular cylinder experience three distinct stages, zero-lift stage, positive-lift stage and negative-lift stage as the rivulet located at various positions. Both pressure-induced and friction-induced aerodynamic forces on the upper rivulet are helpful for its appearance on the upside of the stay cable. The friction-induced aerodynamic forces, which have not been considered in the previous theoretical models, may not be neglected in modeling the RWIV. In positive-lift stage, the shear layer separated from the upper rivulet can reattach on the surface of the cylinder and form separation bubbles, which result in a high non-zero mean lift of the cylinder and potentially induces the occurrence of RWIV. The separation bubbles are intrinsically unsteady flow phenomena. A serial of small eddies first appears in the laminar shear layer separated from the upper rivulet, which then coalesces and reattaches on the side surface of the cylinder and eventually sheds into the wake.

Reasonably completed state assessment of the self-anchored hybrid cable-stayed suspension bridge: An analytical algorithm

  • Kai Wang;Wen-ming Zhang;Jie Chen;Zhe-hong Zhang
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.159-175
    • /
    • 2024
  • In order to solve the problem of calculating the reasonable completed bridge state of a self-anchored hybrid cable-stayed suspension bridge (SA-HCSB), this paper proposes an analytical method. This method simplifies the main beam into a continuous beam with multi-point rigid supports and solves the support reaction forces. According to the segmented catenary theory, it simultaneously solves the horizontal forces of the main span main cables and the stay cables and iteratively calculates the equilibrium force system on the main beam in the collaborative system bridge state while completing the shape finding of the main span main cable and stay cables. Then, the horizontal forces of the side span main cables and stay cables are obtained based on the balance of horizontal forces on the bridge towers, and the shape finding of the side spans are completed according to the segmented catenary theory. Next, the difference between the support reaction forces of the continuous beam with multiple rigid supports obtained from the initial and final iterations is used to calculate the load of ballast on the side span main beam. Finally, the axial forces and strains of each segment of the main beam and bridge tower are obtained based on the loads applied by the main cable and stay cables on the main beam and bridge tower, thereby obtaining analytical data for the bridge in the reasonable completed state. In this paper, the rationality and effectiveness of this analytical method are verified through a case study of a SA-HCSB with a main span of 720m in finite element analysis. At the same time, it is also verified that the equilibrium force of the main beam under the reasonably completed bridge state can be obtained through iterative calculation. The analytical algorithm in this paper has clear physical significance, strong applicability, and high accuracy of calculation results, enriching the shape-finding method of this bridge type.

An Elastic Parabolic Cable Element for Initial Shaping Analysis of Cable-Stayed Bridges (사장교의 초기형상해석을 위한 탄성포물선 케이블요소)

  • Kyung, Yong-Soo;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • This study introduces an elastic parabolic cable element for initial shaping analysis of cable-stayed bridges. First, an elastic catenary cable theory is shortly summarized by deriving the compatibility condition and the tangent stiffness matrices of the elastic catenary cable element. Next, the force-deformation relations and the tangent stiffness matrices of the elastic parabolic cable elements are derived from the assumption that sag configuration under self-weights is small. In addition the equivalent cable tension is defined in the chord-wise direction. Finally, to confirm the accuracy of this element, initial shaping analysis of cable-stayed bridges under dead loads is executed using TCUD in which stay cables are modeled by an elastic parabolic cable and an elastic catenary cable element, respectively. Resultantly it turns that unstrained lengths of stay cables, the equivalent cable tensions, and maximum tensions by the parabolic cable element are nearly the same as those by the catenary cable elements.

Cable vibration control with internal and external dampers: Theoretical analysis and field test validation

  • Di, Fangdian;Sun, Limin;Chen, Lin
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.575-589
    • /
    • 2020
  • For vibration control of stay cables in cable-stayed bridges, viscous dampers are frequently used, and they are regularly installed between the cable and the bridge deck. In practice, neoprene rubber bushings (or of other types) are also widely installed inside the cable guide pipe, mainly for reducing the bending stresses of the cable near its anchorages. Therefore, it is important to understand the effect of the bushings on the performance of the external damper. Besides, for long cables, external dampers installed at a single position near a cable end can no longer provide enough damping due to the sag effect and the limited installation distance. It is thus of interest to improve cable damping by additionally installing dampers inside the guide pipe. This paper hence studies the combined effects of an external damper and an internal damper (which can also model the bushings) on a stay cable. The internal damper is assumed to be a High Damping Rubber (HDR) damper, and the external damper is considered to be a viscous damper with intrinsic stiffness, and the cable sag is also considered. Both the cases when the two dampers are installed close to one cable end and respectively close to the two cable ends are studied. Asymptotic design formulas are derived for both cases considering that the dampers are close to the cable ends. It is shown that when the two dampers are placed close to different cable ends, their combined damping effects are approximately the sum of their separate contributions, regardless of small cable sag and damper intrinsic stiffness. When the two dampers are installed close to the same end, maximum damping that can be achieved by the external damper is generally degraded, regardless of properties of the HDR damper. Field tests on an existing cable-stayed bridge have further validated the influence of the internal damper on the performance of the external damper. The results suggest that the HDR is optimally placed in the guide pipe of the cable-pylon anchorage when installing viscous dampers at one position is insufficient. When an HDR damper or the bushing has to be installed near the external damper, their combined damping effects need to be evaluated using the presented methods.

Evaluation of Tension of Stay Cable using MBM (Measurement-based Model) (계측기반모델에 의한 사장케이블의 장력 평가)

  • Nam, Sang-Jin;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.93-100
    • /
    • 2014
  • This study presents the recomposition of MBM (measurement-based model) using natural frequencies and modes from the usually measured data, and the evaluation of cable tension in service from the analysis results upon MBM of existing CSB (cable stayed bridge). The cable tension is shown to be different according to the position attached to cable and loading type. The measured cable tensions are not different distinctly according to position attached cable under dead and live loads, but larger than those under design loads. The distribution of cable tension calculated upon the MBM is similar to those of measured tension although the former is more than those of cable tension upon the design model. Considering to long-term behaviors of cable, therefore, the design of cable in CSB needs to apply the analysis results on MBM. For this purpose, future study needs lots of measured data and MBM is used to analyze the long-term behavior of cable in CSB.