• Title/Summary/Keyword: stay cable

Search Result 150, Processing Time 0.025 seconds

Effects of tensioning forces on the structural behavior of cable-stayed bridges

  • Lam, Pauline Lin Li;Kang, Thomas H.K.
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.457-464
    • /
    • 2022
  • Optimization in distribution of stay cable forces is one of the most difficult aspects in the design of cable-stayed bridges. This article attempts to examine tension force influence on structural behavior of cable-stayed bridges. For the examination, finite element modeling using nonlinear static and nonlinear modal analyses was completed and compared to structural experimental results. Variables analyzed in this parametric study were: 1) Number of stay cables; 2) Tension of the stay cables, and 3) Stay cable pattern - harp and semi-fan patterns. Though the findings from the analysis are limited to the tested models, the study gives insight on the structural behavior of actual cable stayed bridges.

Experimental Study of Extradosed Bridge Anchor System (엑스트라도조교 사재 정착구 시스템에 대한 실험적 연구)

  • Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.146-154
    • /
    • 2010
  • In this study the experimental results of fatigue specimen for the Strand Stay Cable Assembly of Extadosed bridges is investigated. The fatigue test and tensile experiment is conducted to 6 kinds of specimens. Test specimen OVM250-31 Strand Cable System manufactured by china OVM B-Machinery Co., Ltd, and OVM250-42 Parallel Strand Stay Cable Assembly manufactured by china OVM B-Machinery Co., Ltd, are passed for fatigue test and rupture tensile test. But Test specimen OVM250-42 Parallel Strand Stay Cable Assembly manufactured by korean A-Machinery Co., Ltd, is not passed for fatigue test conducted according to the "Recommendation for Stay Cable Design. The test result are compared to the fatigue criteria of PHI 2001 for cyclic load, and it is concluded that the current korean design code will be needed for representing the fatigue load in Hot Dip Galvanized Strand Stay Cable. It is verified that the new korean specification and quality criteria of Strand Stay Cable and exact experimental applied process will be needed.

Optimization of cables size and prestressing force for a single pylon cable-stayed bridge with Jaya algorithm

  • ATMACA, Barbaros;DEDE, Tayfun;GRZYWINSKI, Maksym
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.853-862
    • /
    • 2020
  • In recent years, due to the many advantages cable-stayed bridges have often constructed in medium and long span. These advantages can be listed as an aesthetically pleasing appearance, economic and easy construction, etc. The main structural elements of cable-stayed bridges are listed as deck, pylon, cables and foundation. Perhaps one of the most vital and expensive of these structural elements is stay-cables. Stay-cables ensure the allowable displacement and distribution of bending moments along the bridge deck with prestressing force. Therefore the optimum design of the stay-cables and prestressing force are very important in achieving the performance expected from the cable-stayed bridges. This paper aims to obtain the stay-cables size and prestressing force optimization of the cable-stayed bridge. For this purpose, single pylon and fan type cable configuration Manavgat Cable-Stayed Bridge was selected as an example. The three dimensional (3D) finite element model (FEM) of the bridge was created with SAP2000. Analysis of the 3D FEM of the bridge was conducted under the different combined effects of the self-weight of the structural element, prestressing force of stay-cable and live load. Stay-cable stress and deck displacement were taken into account as constraints for the optimization problem. To optimize this existing bridge a metaheuristic algorithm named Jaya was used in the optimization process. 3D FEM of the selected bridge was repeatedly analyzed by using Open Applicable Programming Interface (OAPI) properties of SAP2000. To carry out the optimization process the developed program which integrates the Jaya algorithm and the required codes for calling SAP2000 is coded in MATLAB. At the end of the study, the total weight of the stay-cables was reduced more than 40% according to existing stay cables under loads taken into account.

Influence of lateral motion of cable stays on cable-stayed bridges

  • Wang, P.H.;Liu, M.Y.;Huang, Y.T.;Lin, L.C.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.719-738
    • /
    • 2010
  • The aim of this paper concerns with the nonlinear analysis of cable-stayed bridges including the vibration effect of cable stays. Two models for the cable stay system are built up in the study. One is the OECS (one element cable system) model in which one single element per cable stay is used and the other is MECS (multi-elements cable system) model, where multi-elements per cable stay are used. A finite element computation procedure has been set up for the nonlinear analysis of such kind of structures. For shape finding of the cable-stayed bridge with MECS model, an efficient computation procedure is presented by using the two-loop iteration method (equilibrium iteration and shape iteration) with help of the catenary function method to discretize each single cable stay. After the convergent initial shape of the bridge is found, further analysis can then be performed. The structural behaviors of cable-stayed bridges influenced by the cable lateral motion will be examined here detailedly, such as the static deflection, the natural frequencies and modes, and the dynamic responses induced by seismic loading. The results show that the MECS model offers the real shape of cable stays in the initial shape, and all the natural frequencies and modes of the bridge including global modes and local modes. The global mode of the bridge consists of coupled girder, tower and cable stays motion and is a coupled mode, while the local mode exhibits only the motion of cable stays and is uncoupled with girder and tower. The OECS model can only offers global mode of tower and girder without any motion of cable stays, because each cable stay is represented by a single straight cable (or truss) element. In the nonlinear seismic analysis, only the MECS model can offer the lateral displacement response of cable stays and the axial force variation in cable stays. The responses of towers and girders of the bridge determined by both OECS- and MECS-models have no great difference.

Design of Lead-Shear Damper for Stay Cables (사장교 케이블 진동감소용 납-전단 댐퍼의 설계)

  • 안상섭
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.490-495
    • /
    • 2000
  • This paper presents the dynamic behavior of stay cable with Lead-Shear damper( LSD) near the support. This kind of research about the dynamic behavior of LSD is essential to design LSD in order to mitigate the ambient vibration of stay cable. The hysteresis curve of LSD was assumed to be perfect elasto-plastic behavior based on the real hysteretic behavior of such lead-based dampers. Mechanical model of LSD was equivalent Kelvin model and sag effect of stay cable was considered. Yielding force (also referred as size) of LSD was selected as a design parameter. Effects of tension of stay cable and installation point of LSD were studied. It was found that optimal size of LSD exists for each case of stay cable.

  • PDF

Aerodynamic stability of iced stay cables on cable-stayed bridge

  • Li, Shouying;Wu, Teng;Huang, Tao;Chen, Zhengqing
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.253-273
    • /
    • 2016
  • Ice accretions on stay cables may result in the instable vibration of galloping, which would affect the safety of cable-stayed bridges. A large number of studies have investigated the galloping vibrations of transmission lines. However, the obtained aerodynamics in transmission lines cannot be directly applied to the stay cables on cable-stayed bridges. In this study, linear and nonlinear single degree-of-freedom models were introduced to obtain the critical galloping wind velocity of iced stay cables where the aerodynamic lift and drag coefficients were identified in the wind tunnel tests. Specifically, six ice shapes were discussed using section models with geometric scale 1:1. The results presented obvious sudden decrease regions of the aerodynamic lift coefficient for all six test models. Numerical analyses of iced stay cables associated to a medium-span cable-stayed bridge were carried out to evaluate the potential galloping instability. The obtained nonlinear critical wind velocity for a 243-meter-long stay cable is much lower than the design wind velocity. The calculated linear critical wind velocity is even lower. In addition, numerical analyses demonstrated that increasing structural damping could effectively mitigate the galloping vibrations of iced stay cables.

Evaluation of Tension Force of Stay Cables Using Vibration Method (진동법을 이용한 인장 케이블의 장력 추정에 관한 연구)

  • Kim, Nam-Sik;Jeong, Woon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.956-963
    • /
    • 2002
  • In a recent construction industry, cable supported structures such as a cable-stayed bridge or space stadium have been increasingly constructed according to rapidly upgrade their related technologies. Generally stay cables as a critical member need to be rearranged for being satisfied with design tension forces. In this purpose, a vibration method has been applied to estimate the tension forces exerted on existing stay cables. In this study, cable vibration tests were tarried out to evaluate the cable tension forces comparing with theoretical and practical formulas. Using the measured frequencies obtained from free vibration and Impulsive tests, an accuracy of the estimated tension forces is confirmed according to use the first single mode only or higher multiple modes.

Investigation on deck-stay interaction of cable-stayed bridges with appropriate initial shapes

  • Liu, Ming-Yi;Lin, Li-Chin;Wang, Pao-Hsii
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.691-709
    • /
    • 2012
  • This paper provides a variety of viewpoints to illustrate the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges. Based on the smooth and convergent bridge shapes obtained by the initial shape analysis, the one-element cable system (OECS) and multi-element cable system (MECS) models of the Kao Ping Hsi Bridge in Taiwan are developed to verify the applicability of the analytical model and numerical formulation from the field observations in the authors' previous work. For this purpose, the modal analysis of the two finite element models are conducted to calculate the natural frequency and normalized mode shape of the individual modes of the bridge. The modal coupling assessment is also performed to obtain the generalized mass ratios among the structural components for each mode of the bridge. The findings indicate that the coupled modes are attributed to the frequency loci veering and mode localization when the "pure" deck-tower frequency and the "pure" stay cable frequency approach one another, implying that the mode shapes of such coupled modes are simply different from those of the deck-tower system or stay cables alone. The distribution of the generalized mass ratios between the deck-tower system and stay cables are useful indices for quantitatively assessing the degree of coupling for each mode. These results are demonstrated to fully understand the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges.

Analysis of local vibrations in the stay cables of an existing cable-stayed bridge under wind gusts

  • Wu, Qingxiong;Takahashi, Kazuo;Chen, Baochun
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.513-534
    • /
    • 2008
  • This paper examines local vibrations in the stay cables of a cable-stayed bridge subjected to wind gusts. The wind loads, including the self-excited load and the buffeting load, are converted into time-domain values using the rational function approximation and the multidimensional autoregressive process, respectively. The global motion of the girder, which is generated by the wind gusts, is analyzed using the modal analysis method. The local vibration of stay cables is calculated using a model in which an inclined cable is subjected to time-varying displacement at one support under global vibration. This model can consider both forced vibration and parametric vibration. The response characteristics of the local vibrations in the stay cables under wind gusts are described using an existing cable-stayed bridge. The results of the numerical analysis show a significant difference between the combined parametric and forced vibrations and the forced vibration.

Experimental Verification of Semiactive Control Systems for Stay Cable Vibration (케이블 진동 감쇠를 위한 반능동 제어 장치 성능의 실험적 평가)

  • 장지은;정형조;정운;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.52-59
    • /
    • 2004
  • In this paper, the efficacy of the MR damper-based control systems for vibration suppression of stay cables has been experimentally investigated. The performance of the several control strategies for the semiactive control system, such as the clipped-optimal control, the Lyapunov stability theory-based control, the maximum energy dissipation and the modulated homogeneous friction, has been compared with that of the passive-type control systems employing MR dampers. To do this, the full-scale stay cable, which is the same as used for the in-service cable-stayed bridge in Korea, is considered. The acceleration and the displacement of the stay cable as well as the damping force of the MR damper are measured. The velocity of the cable at the damper location, which is needed for some control algorithms, is obtained by differentiating the measured displacement. The damping ratios of the cable system employing the MR damper, which can be estimated by the Hilbert transform-based method, shows effectiveness of each control strategy considered.

  • PDF