• Title/Summary/Keyword: statue

Search Result 236, Processing Time 0.024 seconds

Production Method of Wooden Seated Bodhisattva from Gwaneumsa Temple, Wando (완도 관음사 목조보살좌상의 제작 방법)

  • Kwak, Eungyung;Lee, Hyejin;Yu, Sohyun;Son, Jongmin
    • Conservation Science in Museum
    • /
    • v.18
    • /
    • pp.77-92
    • /
    • 2017
  • This study is based on a scientific analysis of the production method of the wooden seated Bodhisattva statue from Gwaneumsa Temple in Wando, which is currently housed at Chonnam National University Museum. The purpose was to investigate the characteristics of the statue's production through an X-ray inspection of the wooden timbers that make up its base material, a composition analysis of the surface layers, and microscopic observation. The votive prayers found together with the statue allowed the precise dating of the artifact to the sixteenth century, during the Joseon Dynasty. The X-ray transmission identified the statue as being made using the "ilmokjo"(一木造) technique, which means that the entirety of the statue excluding the right hand was produced using a single block of wood. The specimen analysis of the naturally exfoliated surface layer revealed that the current surface was coated with brass to restore the original gilt layer. These research findings added an interesting case to the existing related research and reaffirmed the academic value of this statue.

Petrological Characteristics and Deterioration State of Standing Buddha Statue in the Gwanchoksa Temple, Nonsan, Korea (논산 관촉사 석조미륵보살입상의 암석학적 특성과 풍화훼손도)

  • Yun, Seok-Bong;Kaug, Yean-Chun;Park, Sung-Mi;Yi, Jeong-Eun;Lee, Chan-Hee;Choi, Seok-Won
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.629-641
    • /
    • 2006
  • The Standing Buddha Statue in the Gwanchoksa temple consists of medium to coarse grained biotite granodiorite with dark grey color, and it has a week gneissosity along the pegmatite veins. The results of magnetic susceptibility and geochemical patterns of the host rock of Standing Buddha Statue and the basement rock suggest that both values are formed from the co-genetic magma with the same differentiation process. The CIAs of the basement rock and the Standing Buddha Statue are calculated to 51.43 and 50.86, and the WPIs are estimated 4.52 and 8.95, respectively. So the weathering potential from the host rock of Standing Buddha Statue and basement rock prove to be high. The Standing Buddha Statue is terribly damaged with physical weathering from deterioration and exfoliation, and are scattered with secondary pollutant and precipitate. Basement rock is also in danger of ground collapse because of irregularly developed discontinuity system. Most surface of Standing Buddha Statue is seriously discolored into yellowish brown and dark gray, or black precipitates are also formed. Moreover, it is heavily covered with crustose lichen, fungi and algae, or moss are also found. In order to control the influential factors with the complex deterioration of Standing Buddha Statue, it is needed to rearrange a site environments, and conservation scientific management is required to protect it from covering lichens, exfoliations and fractures.

A Study of the Dried-lacquer Amitabha Buddha Statue from Simhyangsa Temple (심향사 극락전 협저 아미타불의 제작기법에 관한 연구)

  • Jeong, Ji-Yeon;Motoya, Myochin
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.1
    • /
    • pp.134-151
    • /
    • 2014
  • This paper deals with a review of the structure and production techniques of the Dried-lacquer Amitabha Buddha statue enshrined in Geungnakjeon Hall of Simhyangsa Temple, located in Daeho-dong, Naju-si, Jeollanam-do, Korea. To achieve this goal, X-ray date and two rounds of field research were performed. The data collected were reviewed, and a sample peeled off from the damaged part was analyzed to investigate the structure and material of the background layer. The results revealed that the Simhyangsa Temple Buddha statue was an almost empty Dried-lacquer(Hyeopjeo) Buddha statue where wood core had not been framed and inserted in the statue. It was thus observed that considering that the clothes wrinkles clearly remained, the same one as the irregularity of the outer clothes wrinkles, the Dried-lacquer layer was lifted made in an almost complete shape in the process of forming the clay figure as the origin form. The statue was found to be diagonally incised from the top of the head to the back of the neck to remove the clay and wood core. But in other sites, no incision was confirmed. It was observed that on the site of the head where the incision was made, an adhesives(lacquer or paste) was used. In addition, the black eyes were impacted with beads and the ears, hands, bands, and knots were made of wood. These features are identically shown in the Dried-lacquer Amitabha Buddha statue from Seonguksa Temple, known as a work of the late Goryeo dynasty; the Seated Dried-lacquer Buddha statue in Okura Museum of Art in Tokyo, Japan; the Seated Dried-lacquer Amitabha Buddha statue from Jungnimsa Temple, know as a work of the early Joseon dynasty; and the Seated Vairocana Buddha statue in Bulhoesa Temple, the Seated Dried-lacquer Amitabha Buddha and the Seated Dried-lacquer Buddha statue from Silsangsa Temple. The analysis of the back layer demonstrated that the ground layer and the red lacquer were the production of the time. In particular, the bone ash used for the ground layer was also coated for the ground layer of Buddha statues as well as for the production of the lacquerware during the Goryeo dynasty. It was also found that gold mending was conducted more than twice even in modern times and that the layer of the production time was well preserved despite gold mending several times.

The Production Techniques of Korean Dried-lacquer Buddha Statue seen through the Seated Dried-lacquer Bodhisattva Statue in Okura Museum of Art in Tokyo (도쿄 오쿠라슈코칸 협저보살좌상(東京 大倉集古館 夾紵菩薩坐像)을 통하여 본 한국 협저불상의 제작기법)

  • Jeong, Ji-yeon
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.3
    • /
    • pp.172-193
    • /
    • 2013
  • This study examines the production techniques and raw materials shown in the Korean dried-lacquer statues of Buddha through a careful observation of the Seated Dried-lacquer Bodhisattva Statue from the late Goryeo Dynasty which is currently possessed by Okura Museum of Art in Tokyo. As a method of study, the X-ray data and the results from a field survey were combined to analyze the production techniques and the characteristics of raw materials. Based on this analysis, a hypothesis was established on the production process and verified through a reenactment of the actual production process. Then, the characteristics of the techniques applied to each process and the raw materials were recorded in detail. Specifically, the dried lacquer techniques and the raw materials were estimated based on the results of naked-eye observation in comparison with the literature, especially the records of "Xiu Shi Lu" written by Huang Cheng of the Ming Dynasty which is considered as 'the textbook of lacquer techniques.' The raw materials used in the production of the traditional Korean lacquerware inlaid with mother-of-pearl were also referenced. As a result, it was found that the features of production techniques and the raw materials found in the Statue at Okura Museum of Art have many similarities with those of the Seated Dried-lacquer Statue of Lohan (Arhat) from Yuanfu 2 Nian Ming (1098) of the Song Dynasty which is currently at the Honolulu Museum of Art. In particular, the similarities include that the interior of the statue being vacant because the clay and the wood core were not replaced after being removed from the prototype, that the complete form was made in the clay forming stage to apply the lacquer with baste fiber fabric, that the clay and the wood core were removed through the bottom of the statue, and that the modeling stage was omitted and the final coat over the statue is very thin. Additionally, decorating with ornaments like Bobal and Youngrak made of plastic material was a technique widely popular in the Song Dynasty, suggesting that the Seated Dried-lacquer Bodhisattva Statue in Okura Museum of Art was greatly affected by the production techniques of the Dried-lacquer Buddha Statue from the Song Dynasty. There is no precise record on the origin and history of the Korean Dried-lacquer Buddha Statues and the number of existing works is also very limited. Even the records in "Xuanhe Fengshi Gaoli Tujing" that tells us about the origin of the Dried-lacquer Buddha Statue from the Yuan Feng Period (1078~1085) do not indicate the time of transmission. It is also difficult to trace the clear route of transmission of production techniques through existing Dried-lacquer Buddha Statues. Fortunately, this study could at least reveal that the existing Dried-lacquer Buddha Statues of Korea, including the one at Okura Museum of Art, have applied the production techniques rather differently from those used in the production of Japanese Datsukatsu Dried-lacquer Buddha Statues that have been known as the standard rule in making dried-lacquer statues of Buddha for a long time.

Manufacturing Techniques of Bronze Seated Bodhisattva Statue of Goseongsa Temple in Gangjin (강진 고성사 청동보살좌상의 제작기술 연구)

  • LEE Seungchan;BAE Gowoon;CHUNG Kwangyong
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.146-159
    • /
    • 2024
  • In this study, a study on the production technology of the Buddha statue and the production of raw material origin was conducted through scientific analysis on the Bronze seated Bodhisattva Statue of Goseongsa Temple, a treasure. As a result of microstructure analysis through a metal microscope, it was confirmed that the microstructure of the Bronze seated Bodhisattva Statue of Goseongsa Temple was a process-type dendritic structure, and the casting structure of bronze was well represented, so it was manufactured through casting. Subsequently, as a result of analyzing the alloy composition ratio through SEM-EDS, it was identified as a ternary alloy with 81.26 wt% of copper (Cu) and 16.42 wt% of tin (Sn) and 1.72 wt% of lead (Pb). The results of the analysis of lead isotope ratios using a thermal ionization mass spectrometer (TIMS) were substituted into the distribution of lead isotope ratios on the Korean Peninsula, it was shown in corresponding to Jeolla-do and Chungcheong-do regions and North and South Gyeongsang Province. This suggests that the raw materials used in their production were likely sourced from the mines around Goseong Temple in Gangjin. Despite the fact that the statue is a medium and large Buddha with a total height of 51 centimeters, 1.72 wt% of lead (Pb) was found as a result of alloy composition ratio analysis, which showed a similar composition to the lead content ratio of small bronze and gilt-bronze Buddha statues. Therefore, we compared and analyzed the results of the analysis of the composition ratio of the alloys of bronze and gilt bronze statues, which has been scientifically analyzed with a compositional age similar to that of the Bronze seated Bodhisattva Statue of Goseongsa Temple. Comparison results, Various factors, such as the size of the Buddha statue as well as its stylistic characteristics and the age of composition, may exist in determining the alloy composition ratio of the bronze and gilt bronze Buddha statues, and it was confirmed that the alloy composition ratio or casting technology was properly adjusted when the Buddha statue was created. In other words, it is judged that a more comprehensive system of Buddha statue production technology should be investigated by conducting archaeological and art history studies on stylistic characteristics and age of composition, as well as scientific analysis results such as observation of internal structure, microstructure observation, and analysis of alloy composition ratio using radiation transmission irradiation.

Construction and a Chronological Examination of the Fabrics in the Buddhist (불복장 직물의 구조특성 및 연대규명)

  • Kim, Sun-Kyung;Cho, Hyo-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.55 no.8 s.99
    • /
    • pp.73-84
    • /
    • 2005
  • Collections in the buddhist statue owned by Dr. Jong-Hm Baik(白宗欽) included 3 ancient documents and 2 wooden cylinders that showed a clear historical order. The temple and buddhist statue that these objects were belonged to were not known, however, according to the document, it could be inferred as Chunsukwaneumsang(천수관음상) created in 1322 and reformed in 1614 from the list of donator for the statue. Inside a wooden cylinder, a bundle of ivory, yellow, green, orange, and dark brown fabrics that were folded up and tided up with 5 different colored thread strands and aromatic trees and rice plant was placed on the bottom. All the fabrics were silk. Three thread strands were silk. The white and blue strands were cotton fibers as a result of analysis of IR spectrum and the microscope. According to a radioactive carbon isotope dating by accelerator mass spectroscopy, years before present was 160$\pm$40, and cablibrated ages were 1680-1890 (79.3$\%$), 1910-1960(16.1$\%$) in 95.4$\%$ probability. Accordingly, the fabrics in the buddhist statue proved to be reformed in 1614 not the original ones in 1322.

A Conservation Treatment for the Seated Iron Buddha Statue of Dopian Temple, Cheolwon (철원 도피안사 철조비로자나불상의 보존처리)

  • Hong, Jong-Ouk;Hwang, Jin-Ju;Choi, Joon-Hyun;Shin, Hee-Nai;Lee, Yo-Han;Han, Byung-Il;Le, Oh-Hee
    • 보존과학연구
    • /
    • s.30
    • /
    • pp.171-187
    • /
    • 2009
  • The Seated iron Vairocana Buddha statue of Dopiansa Temple, Cheolwon was designated National treasure No. 63, it is very important to rearch about Korean Buddha statue because it has an inscription on the back indicates that it was made in 865 A.D., the fifth year of the reign of King Gyeongmun(861-875) of Unified Silla(668-935), through the devoted faith of some 1,500 Buddhist followers of the Cheorwon-gun area. In this conservation treatment, for the Seated iron Vairocana Buddha statue of Dopiansa Temple, Cheolwon plating layer and cashew paint layer of the iron pedestal were removed and for the paint the Body of the Buddha, fake metal layer and plaster layer were removed, stabilizing treatment and coating treatment were done, and removal and restoration of earlobe which had been damaged and later was restored with plaster in the regilding in 1988, and the white hair on forehead was replaced with material of rock crystal, and conch-shaped hair damaged was restored on 35 spots.

  • PDF

Weathering Characteristics and Condition Assessment Conservation Treatment for Bayon Style Avalokitesvara, Cambodia (캄보디아 바이욘 양식 관음보살상의 풍화특성과 보존처리 상태평가)

  • Choie, Myoungju;Lee, Myeong Seong;Yoo, Ji Hyun;Chun, Yu Gun;Kim, Sothin;In, Sovann;Oum, Sineth
    • Journal of Conservation Science
    • /
    • v.34 no.3
    • /
    • pp.167-177
    • /
    • 2018
  • The Bayon style Avalokitesvara statue from the $13^{th}$ century Angkor period is on display at the Cambodia Angkor Conservation Office. This statue is composed of dark green felthspathic greywacke, the surface of which has been shown light brown discoloration, detected calcite crystallization. As a result of condition assessment, the statue was damaged due to overlap scaling and cracking. Ultrasonic tests have investigated remarkable physical weathering area, flaking and fragmentation in lower velocity. The physical condition of the statue requires a conservation method that improves the binding power. To protect against salt weathering and to ensure physical stability, new conservation material composed of mixed ethyl silicate and sandstone powder similar to that composing the statue was created. The material affected by damage was removed and replaced with the new conservation material.

Nondestructive Deterioration Diagnosis for Wooden Ksitigarbha Triad Statues of Shinhungsa Temple in Sokcho, Korea (속초 신흥사 목조지장보살삼존상의 비파괴 손상도 진단)

  • Han, Na Ra;Lee, Chan Hee;Yi, Jeong Eun
    • Journal of Conservation Science
    • /
    • v.29 no.2
    • /
    • pp.93-102
    • /
    • 2013
  • The wooden Ksitigarbha Triad Statues (Treasure No. 1749) of Shinhungsa temple in Sokcho are enshrined in the inside of the Myeonbujeon Hall. The Statues are highly damaged physical weathering which are crack and exfoliation. Also, the Statues were deteriorated by chemical and biological weathering. This study carried out nondestructive method as deterioration map, ultrasonic measurement, X-ray and endoscopy survey for deterioration evaluation and conservation plan. As a result, Ksitigarbha Statue coated by dust and various pollutants. And gold-gilt of Statue's surface has peeled off. Head part of Mudokguiwang Statue was discolored from water leak in Myeongbujeon Hall. Domyeongjonja Statue is highly damaged by insects. Result of endoscopy, there were bee hives in the inside of the Statue. Therefore, we suggest that these Statues have need to do conservation treatment on the basis of diagnostic results.

A Study on Making a Replica for Restoration of the Stone Lion Statue Excavated from Woljeong Bridge (월정교 출토 사자상 복원을 위한 모본 제작 연구)

  • Lee, Chan Young;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.31 no.2
    • /
    • pp.147-157
    • /
    • 2015
  • TExhibiting replicas of major artifacts is becoming common recently to raise their value and help the public to understand them. In Korea, more attention is paid only to appearance in creating replicas of artifacts. It is required to study reproduction technology minimizing damages to originals and applicable to massive artifacts like sculptures in the situation that replicas and artifact reproduction is increasing. To make a replica of the Stone Lion Statue excavated from Woljeong Bridge, a measured drawing and a cross section are produced based on art historical surveys using 3D scans. A non-contact reproduction method is selected. The strength of the non-contact reproduction method is that the output is detailed. Athough the non-contact method has known to be applicable only to small scale artifacts and require reprocess, it is discovered to be applicable to detailed statues like this lion statue. Therefore, this study may contribute to complement the historic authenticity of the statue as well as to raise its academic value. It also can be utilized as research material of similar artifacts'replicas and restoration.