• Title/Summary/Keyword: stator core

Search Result 201, Processing Time 0.033 seconds

Improved Model of the Iron Loss for the Permanent Magnet Synchronous Motors

  • Junaid, Ikram;Nasrullah, Khan;Kwon, Byung-Il
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.10-17
    • /
    • 2012
  • This paper presents an improved iron loss model, for the computation of the no load iron loss in the stator core of the in-wheel permanent magnet synchronous motors (PMSM), for the cases of with and without stator skew. 2-D analytical model is used for the computation of tooth and yoke flux densities of the in-wheel PMSM. The no load iron loss computed by the improved iron loss model, for the cases of with and without skew is compared with the finite element method (FEM) and the results show good consistency.

Characteristic Analysis of Surface mounted Permanent Magnet Synchronous Motor according to Phase-Separation of Stator (고정자의 상분할에 따른 표면부착형 영구자석 동기전동기 특성 해석)

  • Lee, Seung-Han;Cho, Young-Taek;Cho, Han-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.756-757
    • /
    • 2015
  • This paper deals with characteristic analysis of surface mounted permanent magnet synchronous motor according to a phase-separation of stator. The characteristic analysis of designed model is performed by finite element analysis(FEA), and the result are shown that there is no difference between the two models in comparison with a general SPMSM. Finally, this study verifies the feasibility of SPMSM with separated stator core. The experimental data is shown the validity of this paper.

  • PDF

Efficiency Improvement of an Automotive Alternator by Heat Treatment

  • Kim, Ji-Hyun;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.155-160
    • /
    • 2015
  • Recently, $CO_2$ emission standards and fuel efficiency legislation has been tightened globally. Therefore automotive alternator performance becomes increasingly important to meet the requirements. Many proposed methods have suggested adding magnets or regulation control to increase alternator efficiency and output. However, this creates a significant additional cost. During the stator lamination process, the magnetic property of the stator deteriorates mainly due to stamping and slinky process for an alternator. To maximize the alternator performance, heat treatment of the stator core was performed and magnetic properties were compared to find the optimal condition. Finally, alternator output and efficiency test were performed resulting in significant output and efficiency improvement up to 6.8% and 0.6% respectively.

Performance Comparison of Conventional and Segmental Rotor Type Switched Reluctance Motor

  • Jeong, Kwang-Il;Xu, Zhenyao;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1138-1146
    • /
    • 2018
  • Performance comparisons of switched reluctance motor for cooling fan application are dealt in this paper. Conventional and novel segmental type motors with the same dimension are compared. The conventional 12/8 type is very popular and used widely. The structure of segmental rotor type motor is constructed from a series of discrete segments, and the stator is constructed from two types of stator poles: exciting and auxiliary poles. This type of motor has short flux path and no flux reversal in the stator. The auxiliary poles are not wound by the windings and only provide the flux return path. Compared with conventional SRM, the segmental structure increases electrical utilization of the machine and decreases core losses, which leads to higher efficiency. To verify the segmental structure, finite element method (FEM) is employed to get static and dynamic characteristics of both SRMs. Finally, the prototypes of conventional and segmental SRMs are tested for characteristics comparisons.

Reduction Design of Core Loss in Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기 전동기의 철손 저감 설계)

  • Lee, Su-Jin;Kim, Sung-Il;Kwon, Soon-O;Jung, Jae-Woo;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.760-761
    • /
    • 2008
  • This paper deals with the core loss as well as torque characteristics according to the change of stator shape in an interior permanent magnet synchronous motor (IPMSM). The finite element method and functional core loss data obtained by the steinmetz equation are used in order to estimate the core loss. To minimize the core loss caused by the shape of tooth tip, slot-area and volume of permanent magnet, those are all the same in each model. In the end, the ratio between tooth width and yoke thickness to minimize the core loss in the IPMSM is presented in this paper.

  • PDF

Magnetic Field Distribution Analysis for Core Loss Estimation of Permanent Magnet Machine (영구자석 기기의 철손 예측을 위한 자계 거동 해석)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Choi, Jang-Young;Park, Ji-Hoon;Lee, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.93-95
    • /
    • 2008
  • Nowadays more attention is paid to the developing high efficiency electrical machines for energy saving and protection of natural resources. In general, the electromagnetic losses appearing in electrical machines are widely classified into copper loss, core loss and rotor loss. Particularly, in permanent magnet (PM) machines, core loss forms a larger portion of the total losses than in another machine. So, satisfactory prediction of core loss at the design or analysis stage of PM machines is essential to active high efficiency and high performance. This paper deals with analysis of magnetic field distribution due to geometry of stator core for magnetic core loss calculation of multi-pole PM synchronous machine.

  • PDF

Efficiency Optimization Control of Induction Motor using Adaptive Flux Observer (적응 자속 관측기를 이용한 유도전동기의 효율 최적화 제어)

  • 정동화;박기태;이홍균
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.88-95
    • /
    • 2001
  • Stator core loss has significant adverse effects when an induction motor is controlled by the conventional vector control method. Therefore, taking core toss into account should make it possible to control the torque very precisely. This paper proposes a speed sensorless vector control method for an induction motor at optimum efficiency and high response taking core loss account. The proposed vector control system consists of a speed adaptive rotor flux observer which takes core loss into account and employs a direct vector control which compensates for the influence of core loss. Also, in this paper, a vector controlled induction motor with a deadbeat rotor flux controller is developed. The method ensures optimum efficiency in the steady state without degradation of the dynamic response. The validity of the proposed technique is confirmed by simulation results for induction motor drive system.

  • PDF

Analysis on the Core Loss and Windage Loss in Permanent Magnet Synchronous Motor for High-Speed Application (고속으로 운전되는 영구자석형 동기전동기의 철손 및 풍손 해석)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Cho, Han-Wook
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.511-520
    • /
    • 2006
  • Recently, more attention has been paid to the development of high-speed permanent magnet (PM) synchronous motors, since they are conductive to high efficiency, high power density, small size, and low weight. In high-speed PM machines, core loss and windage loss form a larger proportion of the total losses than usual in conventional mid- or low speed machines. This article deals with the analysis on the core loss and windage loss in PM synchronous motor for high-speed application. Using the data information from a manufacturer and non-linear curve fitting, this paper investigates the magnetic behavior and its core losses in the stator core using the electrical steels. And, the windage loss is calculated according to the variation of the rotational speed, motor inner pressure and temperature.

An Analysis on Core Loss Characteristics for Permanent Magnet Synchronous Generator considering the Load Conditions (부하조건을 고려한 영구자석형 동기발전기의 철손 특성 해석)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Kim, Hyun-Kyu;Lee, Sung-Ho;Sung, Tae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.55-57
    • /
    • 2009
  • This paper deals with an improved core loss calculation under the load conditions, namely, no-load, AC-load and DC-load of multi-pole PM generator from curve fitting method using modified Steinmetz equation considered anomalous loss. For an accurate calculation, magnetic field analyses in stator core considering the time harmonics are performed. And using the nonlinear finite element analysis (FEA), we applied separated rotating and alternating magnetic field to core loss calculation. In order to verify the core loss results by proposed method, the experimental system for no-load core loss measurement has been implemented with DC motor, power analyzer and manufactured PM generator. And, the analysis results with rotational speed agree extremely well with those obtained by measurement.

  • PDF

Design and Characteristics Investigation of Air-core Tubular Linear BLDC Motor (공심슬롯 원통형 선형 BLDC 전동기의 설계 및 특성 고찰)

  • Moon, Ji-Woo;Cho, Yun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.603-609
    • /
    • 2008
  • Slotless linear brushless DC motor are widely used in precision machine applications because of their advantages such as low of detent force, negligible iron loss. But they have a disadvantage such as low thrust density, thrust ripple, and excessive use of permanent magnet materials. These lead to undesirable performance and high production cost. In this paper, we deal with the design and characteristics investigation of a air-core tubular linear brushless DC(TLBLDC) motor with air-core stator and permanent magnet mover. And to investigate the static and dynamic characteristics of air-core TLBLDC motor, the prototype machine is manufactured and analyzed by F.E.M. and Matlab simulink simulations. Especially, dynamic characteristics of air-core TLBLDC motor driven with 6 step inverter are simulated by F.E.M.coupling with external circuit and Matlab simulink program, and measured for the prototype motor. The simulation results are compared to the experimental results such as current waves, thrust and speed curve.