• Title/Summary/Keyword: statistics journal

Search Result 21,866, Processing Time 0.08 seconds

Impact of Semantic Characteristics on Perceived Helpfulness of Online Reviews (온라인 상품평의 내용적 특성이 소비자의 인지된 유용성에 미치는 영향)

  • Park, Yoon-Joo;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.29-44
    • /
    • 2017
  • In Internet commerce, consumers are heavily influenced by product reviews written by other users who have already purchased the product. However, as the product reviews accumulate, it takes a lot of time and effort for consumers to individually check the massive number of product reviews. Moreover, product reviews that are written carelessly actually inconvenience consumers. Thus many online vendors provide mechanisms to identify reviews that customers perceive as most helpful (Cao et al. 2011; Mudambi and Schuff 2010). For example, some online retailers, such as Amazon.com and TripAdvisor, allow users to rate the helpfulness of each review, and use this feedback information to rank and re-order them. However, many reviews have only a few feedbacks or no feedback at all, thus making it hard to identify their helpfulness. Also, it takes time to accumulate feedbacks, thus the newly authored reviews do not have enough ones. For example, only 20% of the reviews in Amazon Review Dataset (Mcauley and Leskovec, 2013) have more than 5 reviews (Yan et al, 2014). The purpose of this study is to analyze the factors affecting the usefulness of online product reviews and to derive a forecasting model that selectively provides product reviews that can be helpful to consumers. In order to do this, we extracted the various linguistic, psychological, and perceptual elements included in product reviews by using text-mining techniques and identifying the determinants among these elements that affect the usability of product reviews. In particular, considering that the characteristics of the product reviews and determinants of usability for apparel products (which are experiential products) and electronic products (which are search goods) can differ, the characteristics of the product reviews were compared within each product group and the determinants were established for each. This study used 7,498 apparel product reviews and 106,962 electronic product reviews from Amazon.com. In order to understand a review text, we first extract linguistic and psychological characteristics from review texts such as a word count, the level of emotional tone and analytical thinking embedded in review text using widely adopted text analysis software LIWC (Linguistic Inquiry and Word Count). After then, we explore the descriptive statistics of review text for each category and statistically compare their differences using t-test. Lastly, we regression analysis using the data mining software RapidMiner to find out determinant factors. As a result of comparing and analyzing product review characteristics of electronic products and apparel products, it was found that reviewers used more words as well as longer sentences when writing product reviews for electronic products. As for the content characteristics of the product reviews, it was found that these reviews included many analytic words, carried more clout, and related to the cognitive processes (CogProc) more so than the apparel product reviews, in addition to including many words expressing negative emotions (NegEmo). On the other hand, the apparel product reviews included more personal, authentic, positive emotions (PosEmo) and perceptual processes (Percept) compared to the electronic product reviews. Next, we analyzed the determinants toward the usefulness of the product reviews between the two product groups. As a result, it was found that product reviews with high product ratings from reviewers in both product groups that were perceived as being useful contained a larger number of total words, many expressions involving perceptual processes, and fewer negative emotions. In addition, apparel product reviews with a large number of comparative expressions, a low expertise index, and concise content with fewer words in each sentence were perceived to be useful. In the case of electronic product reviews, those that were analytical with a high expertise index, along with containing many authentic expressions, cognitive processes, and positive emotions (PosEmo) were perceived to be useful. These findings are expected to help consumers effectively identify useful product reviews in the future.

The Framework of Research Network and Performance Evaluation on Personal Information Security: Social Network Analysis Perspective (개인정보보호 분야의 연구자 네트워크와 성과 평가 프레임워크: 소셜 네트워크 분석을 중심으로)

  • Kim, Minsu;Choi, Jaewon;Kim, Hyun Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.177-193
    • /
    • 2014
  • Over the past decade, there has been a rapid diffusion of electronic commerce and a rising number of interconnected networks, resulting in an escalation of security threats and privacy concerns. Electronic commerce has a built-in trade-off between the necessity of providing at least some personal information to consummate an online transaction, and the risk of negative consequences from providing such information. More recently, the frequent disclosure of private information has raised concerns about privacy and its impacts. This has motivated researchers in various fields to explore information privacy issues to address these concerns. Accordingly, the necessity for information privacy policies and technologies for collecting and storing data, and information privacy research in various fields such as medicine, computer science, business, and statistics has increased. The occurrence of various information security accidents have made finding experts in the information security field an important issue. Objective measures for finding such experts are required, as it is currently rather subjective. Based on social network analysis, this paper focused on a framework to evaluate the process of finding experts in the information security field. We collected data from the National Discovery for Science Leaders (NDSL) database, initially collecting about 2000 papers covering the period between 2005 and 2013. Outliers and the data of irrelevant papers were dropped, leaving 784 papers to test the suggested hypotheses. The co-authorship network data for co-author relationship, publisher, affiliation, and so on were analyzed using social network measures including centrality and structural hole. The results of our model estimation are as follows. With the exception of Hypothesis 3, which deals with the relationship between eigenvector centrality and performance, all of our hypotheses were supported. In line with our hypothesis, degree centrality (H1) was supported with its positive influence on the researchers' publishing performance (p<0.001). This finding indicates that as the degree of cooperation increased, the more the publishing performance of researchers increased. In addition, closeness centrality (H2) was also positively associated with researchers' publishing performance (p<0.001), suggesting that, as the efficiency of information acquisition increased, the more the researchers' publishing performance increased. This paper identified the difference in publishing performance among researchers. The analysis can be used to identify core experts and evaluate their performance in the information privacy research field. The co-authorship network for information privacy can aid in understanding the deep relationships among researchers. In addition, extracting characteristics of publishers and affiliations, this paper suggested an understanding of the social network measures and their potential for finding experts in the information privacy field. Social concerns about securing the objectivity of experts have increased, because experts in the information privacy field frequently participate in political consultation, and business education support and evaluation. In terms of practical implications, this research suggests an objective framework for experts in the information privacy field, and is useful for people who are in charge of managing research human resources. This study has some limitations, providing opportunities and suggestions for future research. Presenting the difference in information diffusion according to media and proximity presents difficulties for the generalization of the theory due to the small sample size. Therefore, further studies could consider an increased sample size and media diversity, the difference in information diffusion according to the media type, and information proximity could be explored in more detail. Moreover, previous network research has commonly observed a causal relationship between the independent and dependent variable (Kadushin, 2012). In this study, degree centrality as an independent variable might have causal relationship with performance as a dependent variable. However, in the case of network analysis research, network indices could be computed after the network relationship is created. An annual analysis could help mitigate this limitation.

Ensemble Learning with Support Vector Machines for Bond Rating (회사채 신용등급 예측을 위한 SVM 앙상블학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.29-45
    • /
    • 2012
  • Bond rating is regarded as an important event for measuring financial risk of companies and for determining the investment returns of investors. As a result, it has been a popular research topic for researchers to predict companies' credit ratings by applying statistical and machine learning techniques. The statistical techniques, including multiple regression, multiple discriminant analysis (MDA), logistic models (LOGIT), and probit analysis, have been traditionally used in bond rating. However, one major drawback is that it should be based on strict assumptions. Such strict assumptions include linearity, normality, independence among predictor variables and pre-existing functional forms relating the criterion variablesand the predictor variables. Those strict assumptions of traditional statistics have limited their application to the real world. Machine learning techniques also used in bond rating prediction models include decision trees (DT), neural networks (NN), and Support Vector Machine (SVM). Especially, SVM is recognized as a new and promising classification and regression analysis method. SVM learns a separating hyperplane that can maximize the margin between two categories. SVM is simple enough to be analyzed mathematical, and leads to high performance in practical applications. SVM implements the structuralrisk minimization principle and searches to minimize an upper bound of the generalization error. In addition, the solution of SVM may be a global optimum and thus, overfitting is unlikely to occur with SVM. In addition, SVM does not require too many data sample for training since it builds prediction models by only using some representative sample near the boundaries called support vectors. A number of experimental researches have indicated that SVM has been successfully applied in a variety of pattern recognition fields. However, there are three major drawbacks that can be potential causes for degrading SVM's performance. First, SVM is originally proposed for solving binary-class classification problems. Methods for combining SVMs for multi-class classification such as One-Against-One, One-Against-All have been proposed, but they do not improve the performance in multi-class classification problem as much as SVM for binary-class classification. Second, approximation algorithms (e.g. decomposition methods, sequential minimal optimization algorithm) could be used for effective multi-class computation to reduce computation time, but it could deteriorate classification performance. Third, the difficulty in multi-class prediction problems is in data imbalance problem that can occur when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. SVM ensemble learning is one of machine learning methods to cope with the above drawbacks. Ensemble learning is a method for improving the performance of classification and prediction algorithms. AdaBoost is one of the widely used ensemble learning techniques. It constructs a composite classifier by sequentially training classifiers while increasing weight on the misclassified observations through iterations. The observations that are incorrectly predicted by previous classifiers are chosen more often than examples that are correctly predicted. Thus Boosting attempts to produce new classifiers that are better able to predict examples for which the current ensemble's performance is poor. In this way, it can reinforce the training of the misclassified observations of the minority class. This paper proposes a multiclass Geometric Mean-based Boosting (MGM-Boost) to resolve multiclass prediction problem. Since MGM-Boost introduces the notion of geometric mean into AdaBoost, it can perform learning process considering the geometric mean-based accuracy and errors of multiclass. This study applies MGM-Boost to the real-world bond rating case for Korean companies to examine the feasibility of MGM-Boost. 10-fold cross validations for threetimes with different random seeds are performed in order to ensure that the comparison among three different classifiers does not happen by chance. For each of 10-fold cross validation, the entire data set is first partitioned into tenequal-sized sets, and then each set is in turn used as the test set while the classifier trains on the other nine sets. That is, cross-validated folds have been tested independently of each algorithm. Through these steps, we have obtained the results for classifiers on each of the 30 experiments. In the comparison of arithmetic mean-based prediction accuracy between individual classifiers, MGM-Boost (52.95%) shows higher prediction accuracy than both AdaBoost (51.69%) and SVM (49.47%). MGM-Boost (28.12%) also shows the higher prediction accuracy than AdaBoost (24.65%) and SVM (15.42%)in terms of geometric mean-based prediction accuracy. T-test is used to examine whether the performance of each classifiers for 30 folds is significantly different. The results indicate that performance of MGM-Boost is significantly different from AdaBoost and SVM classifiers at 1% level. These results mean that MGM-Boost can provide robust and stable solutions to multi-classproblems such as bond rating.

Stock-Index Invest Model Using News Big Data Opinion Mining (뉴스와 주가 : 빅데이터 감성분석을 통한 지능형 투자의사결정모형)

  • Kim, Yoo-Sin;Kim, Nam-Gyu;Jeong, Seung-Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.143-156
    • /
    • 2012
  • People easily believe that news and stock index are closely related. They think that securing news before anyone else can help them forecast the stock prices and enjoy great profit, or perhaps capture the investment opportunity. However, it is no easy feat to determine to what extent the two are related, come up with the investment decision based on news, or find out such investment information is valid. If the significance of news and its impact on the stock market are analyzed, it will be possible to extract the information that can assist the investment decisions. The reality however is that the world is inundated with a massive wave of news in real time. And news is not patterned text. This study suggests the stock-index invest model based on "News Big Data" opinion mining that systematically collects, categorizes and analyzes the news and creates investment information. To verify the validity of the model, the relationship between the result of news opinion mining and stock-index was empirically analyzed by using statistics. Steps in the mining that converts news into information for investment decision making, are as follows. First, it is indexing information of news after getting a supply of news from news provider that collects news on real-time basis. Not only contents of news but also various information such as media, time, and news type and so on are collected and classified, and then are reworked as variable from which investment decision making can be inferred. Next step is to derive word that can judge polarity by separating text of news contents into morpheme, and to tag positive/negative polarity of each word by comparing this with sentimental dictionary. Third, positive/negative polarity of news is judged by using indexed classification information and scoring rule, and then final investment decision making information is derived according to daily scoring criteria. For this study, KOSPI index and its fluctuation range has been collected for 63 days that stock market was open during 3 months from July 2011 to September in Korea Exchange, and news data was collected by parsing 766 articles of economic news media M company on web page among article carried on stock information>news>main news of portal site Naver.com. In change of the price index of stocks during 3 months, it rose on 33 days and fell on 30 days, and news contents included 197 news articles before opening of stock market, 385 news articles during the session, 184 news articles after closing of market. Results of mining of collected news contents and of comparison with stock price showed that positive/negative opinion of news contents had significant relation with stock price, and change of the price index of stocks could be better explained in case of applying news opinion by deriving in positive/negative ratio instead of judging between simplified positive and negative opinion. And in order to check whether news had an effect on fluctuation of stock price, or at least went ahead of fluctuation of stock price, in the results that change of stock price was compared only with news happening before opening of stock market, it was verified to be statistically significant as well. In addition, because news contained various type and information such as social, economic, and overseas news, and corporate earnings, the present condition of type of industry, market outlook, the present condition of market and so on, it was expected that influence on stock market or significance of the relation would be different according to the type of news, and therefore each type of news was compared with fluctuation of stock price, and the results showed that market condition, outlook, and overseas news was the most useful to explain fluctuation of news. On the contrary, news about individual company was not statistically significant, but opinion mining value showed tendency opposite to stock price, and the reason can be thought to be the appearance of promotional and planned news for preventing stock price from falling. Finally, multiple regression analysis and logistic regression analysis was carried out in order to derive function of investment decision making on the basis of relation between positive/negative opinion of news and stock price, and the results showed that regression equation using variable of market conditions, outlook, and overseas news before opening of stock market was statistically significant, and classification accuracy of logistic regression accuracy results was shown to be 70.0% in rise of stock price, 78.8% in fall of stock price, and 74.6% on average. This study first analyzed relation between news and stock price through analyzing and quantifying sensitivity of atypical news contents by using opinion mining among big data analysis techniques, and furthermore, proposed and verified smart investment decision making model that could systematically carry out opinion mining and derive and support investment information. This shows that news can be used as variable to predict the price index of stocks for investment, and it is expected the model can be used as real investment support system if it is implemented as system and verified in the future.

Development of a Traffic Accident Prediction Model and Determination of the Risk Level at Signalized Intersection (신호교차로에서의 사고예측모형개발 및 위험수준결정 연구)

  • 홍정열;도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.155-166
    • /
    • 2002
  • Since 1990s. there has been an increasing number of traffic accidents at intersection. which requires more urgent measures to insure safety on intersection. This study set out to analyze the road conditions, traffic conditions and traffic operation conditions on signalized intersection. to identify the elements that would impose obstructions in safety, and to develop a traffic accident prediction model to evaluate the safety of an intersection using the cop relation between the elements and an accident. In addition, the focus was made on suggesting appropriate traffic safety policies by dealing with the danger elements in advance and on enhancing the safety on the intersection in developing a traffic accident prediction model fir a signalized intersection. The data for the study was collected at an intersection located in Wonju city from January to December 2001. It consisted of the number of accidents, the road conditions, the traffic conditions, and the traffic operation conditions at the intersection. The collected data was first statistically analyzed and then the results identified the elements that had close correlations with accidents. They included the area pattern, the use of land, the bus stopping activities, the parking and stopping activities on the road, the total volume, the turning volume, the number of lanes, the width of the road, the intersection area, the cycle, the sight distance, and the turning radius. These elements were used in the second correlation analysis. The significant level was 95% or higher in all of them. There were few correlations between independent variables. The variables that affected the accident rate were the number of lanes, the turning radius, the sight distance and the cycle, which were used to develop a traffic accident prediction model formula considering their distribution. The model formula was compared with a general linear regression model in accuracy. In addition, the statistics of domestic accidents were investigated to analyze the distribution of the accidents and to classify intersections according to the risk level. Finally, the results were applied to the Spearman-rank correlation coefficient to see if the model was appropriate. As a result, the coefficient of determination was highly significant with the value of 0.985 and the ranks among the intersections according to the risk level were appropriate too. The actual number of accidents and the predicted ones were compared in terms of the risk level and they were about the same in the risk level for 80% of the intersections.

Comparison of Subjective Symptoms of Fatigue and Salivary pH among Teachers between Special School and Elementary (피로자각증상(疲勞自覺症狀)과 타액(唾液) pH에 관(關)한 조사연구(調査硏究) - 특수학교(特殊學校) 및 국민학교(國民學校) 교사군간(敎師群間)의 비교(比較) -)

  • Lee, Soon-Ja;Kim, Doo-Hie
    • Journal of Preventive Medicine and Public Health
    • /
    • v.22 no.4 s.28
    • /
    • pp.506-517
    • /
    • 1989
  • Two hundred and fifty teachers of special school (for the disabled) and 414 elementary school teachers were selected for the targets in order to compare their degrees of fatigue symptoms and to find what kind of ralationship is between subjective symptoms of fatigue and pH is the saliva. It was 30 minutes before their closing hours on April 21th, 1989 that their physical, mental and neuro-sensory symptoms and salivary pH were examined. The test results are summarized as fallows : It is observed that an interrelation between subjective fatigue and pH in their saliva shows a significant relationship between physical and neuro-sensory symptoms in a sense of statistics. The rate of subjective fatigue complained by the special teachers is higher than that by the elementary teachers. In the case of salivary pH, the special teachers' is as a whole lower than the elementary teachers'. The complain rates in each item, checked, of special teachers are generally higher than those of the elementary teachers. It is in the mental symptom related item that there are many sub-items which show significant difference. According to the average of salivary pH based on the degrees of complained symptoms shown in the pH related items, the salivary pH of the group with complained symptoms is lower than that of the group without complained symptoms. In the rate of complaints, by sex, both sexes of the special teachers show high ones, but salivary pH is low. The complain rate of mental symptoms shown by female group from the special teacher Is significantly higher(p<0.05). By age, the group in their thirties from the special teachers show the higher complain rate of mental symptoms (29.3%) and the lower salivary pH (p<0.05) than that (15.1%) of the elementary teachers belonging to the same age catagory. However, the special teachers in their forties show the lower complain rate of physical symptoms that of the elementary teachers (p<0.05). From the viewpoint of their working years, the special teachers below 14 years and elementary teachers above 15 years in their career show high complain rates. Among those who belong to the catagory of 10-14 working years, the special teachers show the higher complain rate of mental symptoms than that of their counterparts. In the case of the salivary pH, the special teachers of all working-year catagories show the higher pH than that of the elementary teachers. But there is not significantly difference. From the viewpoint of sleeping hours in the previous night of the questionaire surveyed, among those who slept for over 7 hours, the special teachers show the higher complain rate of mental symptoms with a significant difference, but the lower salivary pH than that of their counterparts. From the viewpoint of their marital status, existence of disease history, the special teachers show the higher complain rate of subjective fatigue, but the lower salivary pH than that of the elementary teachers respectively. According to the above results, the special teachers generally show the higher complain rate of subjective fatigue, the lower salivary pH, and the higher complain rate of mental symptoms. To prevent the possible accumulation of mental fatigue of the special teachers, ways and means to make use of leisure time, recreational facilities are necessarily provided. Since the degree of fatigue and salivary pH have a correlation to some extent, it is necessary that further continuous studies on the correlation between the degrees of fatigue and salivary pH should be pursued.

  • PDF

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.

A Two-Stage Learning Method of CNN and K-means RGB Cluster for Sentiment Classification of Images (이미지 감성분류를 위한 CNN과 K-means RGB Cluster 이-단계 학습 방안)

  • Kim, Jeongtae;Park, Eunbi;Han, Kiwoong;Lee, Junghyun;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.139-156
    • /
    • 2021
  • The biggest reason for using a deep learning model in image classification is that it is possible to consider the relationship between each region by extracting each region's features from the overall information of the image. However, the CNN model may not be suitable for emotional image data without the image's regional features. To solve the difficulty of classifying emotion images, many researchers each year propose a CNN-based architecture suitable for emotion images. Studies on the relationship between color and human emotion were also conducted, and results were derived that different emotions are induced according to color. In studies using deep learning, there have been studies that apply color information to image subtraction classification. The case where the image's color information is additionally used than the case where the classification model is trained with only the image improves the accuracy of classifying image emotions. This study proposes two ways to increase the accuracy by incorporating the result value after the model classifies an image's emotion. Both methods improve accuracy by modifying the result value based on statistics using the color of the picture. When performing the test by finding the two-color combinations most distributed for all training data, the two-color combinations most distributed for each test data image were found. The result values were corrected according to the color combination distribution. This method weights the result value obtained after the model classifies an image's emotion by creating an expression based on the log function and the exponential function. Emotion6, classified into six emotions, and Artphoto classified into eight categories were used for the image data. Densenet169, Mnasnet, Resnet101, Resnet152, and Vgg19 architectures were used for the CNN model, and the performance evaluation was compared before and after applying the two-stage learning to the CNN model. Inspired by color psychology, which deals with the relationship between colors and emotions, when creating a model that classifies an image's sentiment, we studied how to improve accuracy by modifying the result values based on color. Sixteen colors were used: red, orange, yellow, green, blue, indigo, purple, turquoise, pink, magenta, brown, gray, silver, gold, white, and black. It has meaning. Using Scikit-learn's Clustering, the seven colors that are primarily distributed in the image are checked. Then, the RGB coordinate values of the colors from the image are compared with the RGB coordinate values of the 16 colors presented in the above data. That is, it was converted to the closest color. Suppose three or more color combinations are selected. In that case, too many color combinations occur, resulting in a problem in which the distribution is scattered, so a situation fewer influences the result value. Therefore, to solve this problem, two-color combinations were found and weighted to the model. Before training, the most distributed color combinations were found for all training data images. The distribution of color combinations for each class was stored in a Python dictionary format to be used during testing. During the test, the two-color combinations that are most distributed for each test data image are found. After that, we checked how the color combinations were distributed in the training data and corrected the result. We devised several equations to weight the result value from the model based on the extracted color as described above. The data set was randomly divided by 80:20, and the model was verified using 20% of the data as a test set. After splitting the remaining 80% of the data into five divisions to perform 5-fold cross-validation, the model was trained five times using different verification datasets. Finally, the performance was checked using the test dataset that was previously separated. Adam was used as the activation function, and the learning rate was set to 0.01. The training was performed as much as 20 epochs, and if the validation loss value did not decrease during five epochs of learning, the experiment was stopped. Early tapping was set to load the model with the best validation loss value. The classification accuracy was better when the extracted information using color properties was used together than the case using only the CNN architecture.

Self-Regulatory Mode Effects on Emotion and Customer's Response in Failed Services - Focusing on the moderate effect of attribution processing - (고객의 자기조절성향이 서비스 실패에 따른 부정적 감정과 고객반응에 미치는 영향 - 귀인과정에 따른 조정적 역할을 중심으로 -)

  • Sung, Hyung-Suk;Han, Sang-Lin
    • Asia Marketing Journal
    • /
    • v.12 no.2
    • /
    • pp.83-110
    • /
    • 2010
  • Dissatisfied customers may express their dissatisfaction behaviorally. These behavioral responses may impact the firms' profitability. How do we model the impact of self regulatory orientation on emotions and subsequent customer behaviors? Obviously, the positive and negative emotions experienced in these situations will influence the overall degree of satisfaction or dissatisfaction with the service(Zeelenberg and Pieters 1999). Most likely, these specific emotions will also partly determine the subsequent behavior in relation to the service and service provider, such as the likelihood of complaining, the degree to which customers will switch or repurchase, and the extent of word of mouth communication they will engage in(Zeelenberg and Pieters 2004). This study investigates the antecedents, consequences of negative consumption emotion and the moderate effect of attribution processing in an integrated model(self regulatory mode → specific emotions → behavioral responses). We focused on the fact that regret and disappointment have effects on consumer behavior. Especially, There are essentially two approaches in this research: the valence based approach and the specific emotions approach. The authors indicate theoretically and show empirically that it matters to distinguish these approaches in services research. and The present studies examined the influence of two regulatory mode concerns(Locomotion orientation and Assessment orientation) with making comparisons on experiencing post decisional regret and disappointment(Pierro, Kruglanski, and Higgins 2006; Pierro et al. 2008). When contemplating a decision with a negative outcome, it was predicted that high (vs low) locomotion would induce more disappointment than regret, whereas high (vs low) assessment would induce more regret than disappointment. The validity of the measurement scales was also confirmed by evaluations provided by the participating respondents and an independent advisory panel; samples provided recommendations throughout the primary, exploratory phases of the study. The resulting goodness of fit statistics were RMR or RMSEA of 0.05, GFI and AGFI greater than 0.9, and a chi-square with a 175.11. The indicators of the each constructs were very good measures of variables and had high convergent validity as evidenced by the reliability with a more than 0.9. Some items were deleted leaving those that reflected the cognitive dimension of importance rather than the dimension. The indicators were very good measures and had convergent validity as evidenced by the reliability of 0.9. These results for all constructs indicate the measurement fits the sample data well and is adequate for use. The scale for each factor was set by fixing the factor loading to one of its indicator variables and then applying the maximum likelihood estimation method. The results of the analysis showed that directions of the effects in the model are ultimately supported by the theory underpinning the causal linkages of the model. This research proposed 6 hypotheses on 6 latent variables and tested through structural equation modeling. 6 alternative measurements were compared through statistical significance test of the paths of research model and the overall fitting level of structural equation model and the result was successful. Also, Locomotion orientation more positively influences disappointment when internal attribution is high than low and Assessment orientation more positively influences regret when external attribution is high than low. In sum, The results of our studies suggest that assessment and locomotion concerns, both as chronic individual predispositions and as situationally induced states, influence the amount of people's experienced regret and disappointment. These findings contribute to our understanding of regulatory mode, regret, and disappointment. In previous studies of regulatory mode, relatively little attention has been paid to the post actional evaluative phase of self regulation. The present findings indicate that assessment concerns and locomotion concerns are clearly distinct in this phase, with individuals higher in assessment delving more into possible alternatives to past actions and individuals higher in locomotion engaging less in such reflective thought. What this suggests is that, separate from decreasing the amount of counterfactual thinking per se, individuals with locomotion concerns want to move on, to get on with it. Regret is about the past and not the future. Thus, individuals with locomotion concerns are less likely to experience regret. The results supported our predictions. We discuss the implications of these findings for the nature of regret and disappointment from the perspective of their relation to regulatory mode. Also, self regulatory mode and the specific emotions(disappointment and regret) were assessed and their influence on customers' behavioral responses(inaction, word of mouth) was examined, using a sample of 275 customers. It was found that emotions have a direct impact on behavior over and above the effects of negative emotions and customer behavior. Hence, We argue against incorporating emotions such as regret and disappointment into a specific response measure and in favor of a specific emotions approach on self regulation. Implications for services marketing practice and theory are discussed.

  • PDF

The Impact of Entrepreneurial Passion on Competitive Advantage of SMEs and Sole Proprietors : Moderating Effect of Corporate Reputation (중소벤처기업·소상공인 CEO의 기업가적열정이 경쟁우위에 미치는 영향 : 기업평판의 조절 효과)

  • Lee, Hyung-tae;Yoo, Jae-won
    • Journal of Venture Innovation
    • /
    • v.7 no.2
    • /
    • pp.77-99
    • /
    • 2024
  • Small and medium-sized venture companies and small business owners play an important role in the Korean economy. According to the Ministry of SMEs and Startups' statistics survey in 2019, the proportion of all employees of small and medium-sized venture companies in Korea was 89.8%, which is overwhelmingly higher than that of Japan's 77.8% and Taiwan's 76.6%, so job creation for small and medium-sized venture companies in Korea is absolute. Compared to large companies, it is known that it is difficult for small and medium-sized venture companies in Korea to secure a competitive advantage due to low cost competitiveness, difficulties in R&D/marketing due to lack of capital, difficulties in securing networks, and lack of management know-how. Many scholars, including Kerr and Schumpeter, have studied entrepreneurship since the mid-1950s. Recently, research has been conducted in various fields such as business administration, psychology, and economics. However, research on the personal characteristics of CEOs of small and medium-sized venture companies such as entrepreneurial passion and corporate reputation, which is the overall image of companies, is still insufficient, and comparisons of effects between variables between groups (by industry, by pressure, etc.) have not yet been presented. Entrepreneurial passion plays an important role in promoting new business creation, job creation, and economic growth. Therefore, entrepreneurial Cultivating and promoting passion will also contribute to socioeconomic development. These are government policies, educational programs, and social awareness It can be achieved through improvement, etc., and is especially important in the current market conditions where innovation and growth are important. In conclusion Entrepreneurial passion is an important factor that has a positive effect on all individuals, businesses, and society. Therefore, research on entrepreneurial passion is It is an essential task to maximize these positive effects. In this study, in order to overcome the limitations of existing studies, entrepreneurs' Whether entrepreneurial passion, which is a personal characteristic, affects competitive advantage, absorption capacity and product and process innovation capabilities are Whether there is a mediating effect between entrepreneurial passion and competitive advantage. Finally, in the relationship between entrepreneurial passion and absorption capacity. The corporate reputation verifies whether it has a moderating effect, etc., and compares the influencing factors between variables by industry and pressure. It is intended to be verified empirically. In this study, 2023 conducted by the Small and Medium Business Distribution Center under the Ministry of SMEs and Startups for 312 CEOs of small and medium-sized venture companies and small business owners who participated in the online market support project for small and medium-sized venture companies and small business owners, December 2023 Survey and analysis were conducted from 1st to 20th, and the analysis used Smart PLS 4.0 to determine the impact on the relationship between variables. It was empirically verified. As a result of the study, it was found that entrepreneurial passion had a positive effect on absorption capacity, and the product was found And it was found to have a positive effect on process innovation capability and competitive advantage. In addition, the higher the corporate reputation, the more entrepreneurial it is. It was confirmed that passion had a greater effect on absorption capacity.