• 제목/요약/키워드: statistical techniques

검색결과 1,664건 처리시간 0.045초

Canonical Correlation Biplot

  • Park, Mi-Ra;Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • 제3권1호
    • /
    • pp.11-19
    • /
    • 1996
  • Canonical correlation analysis is a multivariate technique for identifying and quantifying the statistical relationship between two sets of variables. Like most multivariate techniques, the main objective of canonical correlation analysis is to reduce the dimensionality of the dataset. It would be particularly useful if high dimensional data can be represented in a low dimensional space. In this study, we will construct statistical graphs for paired sets of multivariate data. Specifically, plots of the observations as well as the variables are proposed. We discuss the geometric interpretation and goodness-of-fit of the proposed plots. We also provide a numerical example.

  • PDF

A Study on a Statistical Matching Method Using Clustering for Data Enrichment

  • Kim Soon Y.;Lee Ki H.;Chung Sung S.
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.509-520
    • /
    • 2005
  • Data fusion is defined as the process of combining data and information from different sources for the effectiveness of the usage of useful information contents. In this paper, we propose a data fusion algorithm using k-means clustering method for data enrichment to improve data quality in knowledge discovery in database(KDD) process. An empirical study was conducted to compare the proposed data fusion technique with the existing techniques and shows that the newly proposed clustering data fusion technique has low MSE in continuous fusion variables.

통계적 기법을 이용한 악성 소프트웨어 분류 (Malware classification using statistical techniques)

  • 원성민;김현주;송종우
    • 응용통계연구
    • /
    • 제30권6호
    • /
    • pp.851-865
    • /
    • 2017
  • 최근 워너크라이라는 이름의 랜섬웨어가 전 세계적으로 큰 화두에 오르면서, 악성 소프트웨어로 인한 피해를 줄이기 위한 방법들이 재조명 되고 있다. 새로운 악성 소프트웨어가 발생했을 때 피해를 최소화하기 위해서는 해당 소프트웨어가 어떤 공격 유형을 가진 악성 소프트웨어인지 빠르게 분류할 필요가 있다. 본 연구 목적은 다양한 통계적 기법을 이용하여 악성 소프트웨어를 효과적으로 분류할 수 있는 모형을 구축하는 데 있다. 모형 적합 시 다항 로지스틱, 랜덤 포레스트, 그래디언트 부스팅, 서포트 벡터 기계 등의 기법들을 이용하였으며, 본 연구를 통해 악성 소프트웨어를 분류하는 데에 있어 중요한 역할을 하는 변수들이 존재한다는 사실을 발견하였다.

Assessment of Water Quality using Multivariate Statistical Techniques: A Case Study of the Nakdong River Basin, Korea

  • Park, Seongmook;Kazama, Futaba;Lee, Shunhwa
    • Environmental Engineering Research
    • /
    • 제19권3호
    • /
    • pp.197-203
    • /
    • 2014
  • This study estimated spatial and seasonal variation of water quality to understand characteristics of Nakdong river basin, Korea. All together 11 parameters (discharge, water temperature, dissolved oxygen, 5-day biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, electrical conductivity, total nitrogen, total phosphorus, and total organic carbon) at 22 different sites for the period of 2003-2011 were analyzed using multivariate statistical techniques (cluster analysis, principal component analysis and factor analysis). Hierarchical cluster analysis grouped whole river basin into three zones, i.e., relatively less polluted (LP), medium polluted (MP) and highly polluted (HP) based on similarity of water quality characteristics. The results of factor analysis/principal component analysis explained up to 83.0%, 81.7% and 82.7% of total variance in water quality data of LP, MP, and HP zones, respectively. The rotated components of PCA obtained from factor analysis indicate that the parameters responsible for water quality variations were mainly related to discharge and total pollution loads (non-point pollution source) in LP, MP and HP areas; organic and nutrient pollution in LP and HP zones; and temperature, DO and TN in LP zone. This study demonstrates the usefulness of multivariate statistical techniques for analysis and interpretation of multi-parameter, multi-location and multi-year data sets.

Comparison of different post-processing techniques in real-time forecast skill improvement

  • Jabbari, Aida;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.150-150
    • /
    • 2018
  • The Numerical Weather Prediction (NWP) models provide information for weather forecasts. The highly nonlinear and complex interactions in the atmosphere are simplified in meteorological models through approximations and parameterization. Therefore, the simplifications may lead to biases and errors in model results. Although the models have improved over time, the biased outputs of these models are still a matter of concern in meteorological and hydrological studies. Thus, bias removal is an essential step prior to using outputs of atmospheric models. The main idea of statistical bias correction methods is to develop a statistical relationship between modeled and observed variables over the same historical period. The Model Output Statistics (MOS) would be desirable to better match the real time forecast data with observation records. Statistical post-processing methods relate model outputs to the observed values at the sites of interest. In this study three methods are used to remove the possible biases of the real-time outputs of the Weather Research and Forecast (WRF) model in Imjin basin (North and South Korea). The post-processing techniques include the Linear Regression (LR), Linear Scaling (LS) and Power Scaling (PS) methods. The MOS techniques used in this study include three main steps: preprocessing of the historical data in training set, development of the equations, and application of the equations for the validation set. The expected results show the accuracy improvement of the real-time forecast data before and after bias correction. The comparison of the different methods will clarify the best method for the purpose of the forecast skill enhancement in a real-time case study.

  • PDF

Association Rule Mining by Environmental Data Fusion

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권2호
    • /
    • pp.279-287
    • /
    • 2007
  • Data fusion is the process of combining multiple data in order to produce information of tactical value to the user. Data fusion is generally defined as the use of techniques that combine data from multiple sources and gather that information in order to achieve inferences. Data fusion is also called data combination or data matching. Data fusion is divided in five branch types which are exact matching, judgemental matching, probability matching, statistical matching, and data linking. In this paper, we develop was macro program for statistical matching which is one of five branch types for data fusion. And then we apply data fusion and association rule techniques to environmental data.

  • PDF

A review of tree-based Bayesian methods

  • Linero, Antonio R.
    • Communications for Statistical Applications and Methods
    • /
    • 제24권6호
    • /
    • pp.543-559
    • /
    • 2017
  • Tree-based regression and classification ensembles form a standard part of the data-science toolkit. Many commonly used methods take an algorithmic view, proposing greedy methods for constructing decision trees; examples include the classification and regression trees algorithm, boosted decision trees, and random forests. Recent history has seen a surge of interest in Bayesian techniques for constructing decision tree ensembles, with these methods frequently outperforming their algorithmic counterparts. The goal of this article is to survey the landscape surrounding Bayesian decision tree methods, and to discuss recent modeling and computational developments. We provide connections between Bayesian tree-based methods and existing machine learning techniques, and outline several recent theoretical developments establishing frequentist consistency and rates of convergence for the posterior distribution. The methodology we present is applicable for a wide variety of statistical tasks including regression, classification, modeling of count data, and many others. We illustrate the methodology on both simulated and real datasets.

통계적 기법을 이용한 휴폐광산의 중금속 위해성 평가 (Risk Assessment for Heavy Metal Pollutants of Abandoned Mines Using Statistical Techniques)

  • 도현승;김성덕;이승주
    • 대한안전경영과학회지
    • /
    • 제11권3호
    • /
    • pp.41-48
    • /
    • 2009
  • The risk assessment for heavy metal pollutions were analyzed by using statistical techniques including correlation and cluster analyses. The contamination data in this investigation obtained were from the Chungcheongnam-do abandoned mines. The descriptive statistical analysis showed that the values of Pb and Zn were relatively higher than other heavy metal values. The detection of heavy metals by distance from abandoned mines within 1,000m were mostly As, Cd, Pb, and Zn. It was noted, especially, that Zn was even detected at 4,000m The results of coefficient correlation showed that Zn to Cd was the highest values. The cluster and dendogram analyses were generated. The results showed the two clear groups by heavy metal characteristics.

통계적 기법을 이용한 스팸메시지 필터링 기법 (A Technique of Statistical Message Filtering for Blocking Spam Message)

  • 김성윤;차태수;박제원;최재현;이남용
    • 한국IT서비스학회지
    • /
    • 제13권3호
    • /
    • pp.299-308
    • /
    • 2014
  • Due to indiscriminately received spam messages on information society, spam messages cause damages not only to person but also to our community. Nowadays a lot of spam filtering techniques, such as blocking characters, are studied actively. Most of these studies are content-based spam filtering technologies through machine learning.. Because of a spam message transmission techniques are being developed, spammers have to send spam messages using term spamming techniques. Spam messages tend to include number of nouns, using repeated words and inserting special characters between words in a sentence. In this paper, considering three features, SPSS statistical program were used in parameterization and we derive the equation. And then, based on this equation we measured the performance of classification of spam messages. The study compared with previous studies FP-rate in terms of further minimizing the cost of product was confirmed to show an excellent performance.

Development of Scoring Model on Customer Attrition Probability by Using Data Mining Techniques

  • Han, Sang-Tae;Lee, Seong-Keon;Kang, Hyun-Cheol;Ryu, Dong-Kyun
    • Communications for Statistical Applications and Methods
    • /
    • 제9권1호
    • /
    • pp.271-280
    • /
    • 2002
  • Recently, many companies have applied data mining techniques to promote competitive power in the field of their business market. In this study, we address how data mining, that is a technique to enable to discover knowledge from a deluge of data, Is used in an executed project in order to support decision making of an enterprise. Also, we develope scoring model on customer attrition probability for automobile-insurance company using data mining techniques. The development of scoring model in domestic insurance is given as an example concretely.