• 제목/요약/키워드: statistical regression modeling

검색결과 194건 처리시간 0.022초

Consumer awareness about mask repurchase intention during coronavirus: The case of Chinese sample

  • Cui, Yu Hua
    • 한국의상디자인학회지
    • /
    • 제23권2호
    • /
    • pp.93-104
    • /
    • 2021
  • The worldwide coronavirus pandemic has brought to light the importance of having a reliable supply of masks for each person. This study aims to understand the effect of personal awareness (including community, others', and safety awareness) on consumption conformity and the repurchase intention of masks. The research method used the SPSS 22.0 and AMOS 22.0 statistical systems to analyze descriptive statistics in terms of reliability, validity, structural equation modeling, and moderated regression analysis. A total of 272 Chinese participants were recruited via an online survey website (www.sojump.com) from May 1 to May 14, 2020. Findings indicated that mask users' awareness can be categorized into three distinct types: community, others', and safety awareness. The more community and safety awareness is perceived, the higher the level of consumption conformity. In contrast, others' has no statistical effect on consumption conformity or repurchase intention. The positive influence of consumption conformity on the repurchase intention of masks is also weaker than price perception. However, another moderating variable, mask quality, has no moderating effect. The results of this study can help mask manufacturers and distributors retain their customers, resulting in reasonable protective measures while maintaining market order. Theoretical and managerial implications for mask suppliers are also provided.

DR-LSTM: Dimension reduction based deep learning approach to predict stock price

  • Ah-ram Lee;Jae Youn Ahn;Ji Eun Choi;Kyongwon Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제31권2호
    • /
    • pp.213-234
    • /
    • 2024
  • In recent decades, increasing research attention has been directed toward predicting the price of stocks in financial markets using deep learning methods. For instance, recurrent neural network (RNN) is known to be competitive for datasets with time-series data. Long short term memory (LSTM) further improves RNN by providing an alternative approach to the gradient loss problem. LSTM has its own advantage in predictive accuracy by retaining memory for a longer time. In this paper, we combine both supervised and unsupervised dimension reduction methods with LSTM to enhance the forecasting performance and refer to this as a dimension reduction based LSTM (DR-LSTM) approach. For a supervised dimension reduction method, we use methods such as sliced inverse regression (SIR), sparse SIR, and kernel SIR. Furthermore, principal component analysis (PCA), sparse PCA, and kernel PCA are used as unsupervised dimension reduction methods. Using datasets of real stock market index (S&P 500, STOXX Europe 600, and KOSPI), we present a comparative study on predictive accuracy between six DR-LSTM methods and time series modeling.

공간 극단값의 분계점 모형 사례 연구 - 한국 여름철 강수량 (Threshold Modelling of Spatial Extremes - Summer Rainfall of Korea)

  • 황승용;최혜미
    • 응용통계연구
    • /
    • 제27권4호
    • /
    • pp.655-665
    • /
    • 2014
  • 폭염, 폭우와 가뭄 등과 같은 이상 기후 현상에 대한 적절한 대응이 최근 많이 요구되고 있다. 이상 기후 현상을 분석하기 위해 극단값 분석 기법을 적용할 수 있는데, 본 논문은에서는 한국의 여름철 강수량 자료(1973년부터 2012년까지의 5월부터 9월)를 분계점 초과값 모형으로 분석해보았다. 분계점은 한국의 기상관측소들을 5개의 군집으로 나누어, 각 군집별로 지리 정보와 시간을 공변량으로 하는 분위수 회귀 방법을 통하여 추정하였다. Northrop과 Jonathan (2011)과 같이 극단값들이 시공간적으로 독립이라고 가정하고 분석한 후, 추정오차와 검정 과정에 공간 종속성을 반영하였다.

선형 회귀 분석과 회색 관계 분석을 이용한 디젤엔진의 다단연료분사 제어전략 최적화 연구 (A Study on the Optimization of Multiple Injection Strategy for a Diesel Engine using Grey Relational Analysis and Linear Regression Analysis)

  • 김수겸;우승철;김웅일;박상기;이기형
    • 한국분무공학회지
    • /
    • 제20권4호
    • /
    • pp.247-253
    • /
    • 2015
  • Recently, the engine calibration technique has been much more complicated than that of the past engine case in order to satisfy the strict emission regulations. The current calibration method for the diesel engine which has an increasing market is both costly and time-consuming. New engine calibration method is required to develop for high-quality diesel engines with low cost and release it at the appropriate time. This study provides the optimal calibrating technique for complex engine systems using statistical modeling and numerical optimization. Firstly, it design a test plan based on Design of Experiments, a V-optimality methodology which is suitable looking for set-points, and determine the shape of test engine response. Secondly, it uses functions to make linear regression model for data analysis and optimization to fit the models of engines behavior. Finally, it generates the optimal calibrations obtained directly from empirical engine models using Grey Relational Analysis and compares the calibrations with data. This method can develop a process for systematically identifying the optimal balance of engine emissions.

GMAW 공정 중 용접 변수들이 용접 폭에 미치는 영향에 관한 연구 (The Effects of Welding Process Parameters on Weld bead Width in GMAW Processes)

  • 김일수;권욱현;박창언
    • Journal of Welding and Joining
    • /
    • 제14권4호
    • /
    • pp.33-42
    • /
    • 1996
  • In recent years there has been a significant growth in the use of the automated and/or robotic welding system, carried out as a means of improving productivity and quality, reducing product costs and removing the operator from tedious and potentially hazardous environments. One of the major difficulties with the automated and/or robotic welding process is the inherent lack of mathematical models for determination of suitable welding process parameters. Partial-penetration, single-pass bead-on-plate welds were fabricated in 12mm AS 1204 mild steel flats employing five different welding process parameters. The experimental results were used to develop three empirical equations: curvilinear; polynomial; and linear equations. The results were also employed to find the best mathematical equation under weld bend width to assist in the process control algorithms for the Gas Metal Arc Welding(GMAW) process and to correlate welding process parameters with weld bead width of bead-on-plates deposited. With the help of a standard statistical package program. SAS, multipe regression analysis was undertaken for investigating and modeling the GMAW process, and significance test techniques were applied for the interpretation of the experimental data.

  • PDF

Analyzing the compressive strength of clinker mortars using approximate reasoning approaches - ANN vs MLR

  • Beycioglu, Ahmet;Emiroglu, Mehmet;Kocak, Yilmaz;Subasi, Serkan
    • Computers and Concrete
    • /
    • 제15권1호
    • /
    • pp.89-101
    • /
    • 2015
  • In this paper, Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR) models were discussed to determine the compressive strength of clinker mortars cured for 1, 2, 7 and 28 days. In the experimental stage, 1288 mortar samples were produced from 322 different clinker specimens and compressive strength tests were performed on these samples. Chemical properties of the clinker samples were also determined. In the modeling stage, these experimental results were used to construct the models. In the models tricalcium silicate ($C_3S$), dicalcium silicate ($C_2S$), tricalcium aluminate ($C_3A$), tetracalcium alumina ferrite ($C_4AF$), blaine values, specific gravity and age of samples were used as inputs and the compressive strength of clinker samples was used as output. The approximate reasoning ability of the models compared using some statistical parameters. As a result, ANN has shown satisfying relation with experimental results and suggests an alternative approach to evaluate compressive strength estimation of clinker mortars using related inputs. Furthermore MLR model showed a poor ability to predict.

Statistical Inference for an Arithmetic Process

  • Francis, Leung Kit-Nam
    • Industrial Engineering and Management Systems
    • /
    • 제1권1호
    • /
    • pp.87-92
    • /
    • 2002
  • A stochastic process {$A_n$, n = 1, 2, ...} is an arithmetic process (AP) if there exists some real number, d, so that {$A_n$ + (n-1)d, n =1, 2, ...} is a renewal process (RP). AP is a stochastically monotonic process and can be used for modeling a point process, i.e. point events occurring in a haphazard way in time (or space), especially with a trend. For example, the vents may be failures arising from a deteriorating machine; and such a series of failures id distributed haphazardly along a time continuum. In this paper, we discuss estimation procedures for an AP, similar to those for a geometric process (GP) proposed by Lam (1992). Two statistics are suggested for testing whether a given process is an AP. If this is so, we can estimate the parameters d, ${\mu}_{A1}$ and ${\sigma}^{2}_{A1}$ of the AP based on the techniques of simple linear regression, where ${\mu}_{A1}$ and ${\sigma}^2_{A1}$ are the mean and variance of the first random variable $A_1$ respectively. In this paper, the procedures are, for the most part, discussed in reliability terminology. Of course, the methods are valid in any area of application, in which case they should be interpreted accordingly.

EPB-TBM performance prediction using statistical and neural intelligence methods

  • Ghodrat Barzegari;Esmaeil Sedghi;Ata Allah Nadiri
    • Geomechanics and Engineering
    • /
    • 제37권3호
    • /
    • pp.197-211
    • /
    • 2024
  • This research studies the effect of geotechnical factors on EPB-TBM performance parameters. The modeling was performed using simple and multivariate linear regression methods, artificial neural networks (ANNs), and Sugeno fuzzy logic (SFL) algorithm. In ANN, 80% of the data were randomly allocated to training and 20% to network testing. Meanwhile, in the SFL algorithm, 75% of the data were used for training and 25% for testing. The coefficient of determination (R2) obtained between the observed and estimated values in this model for the thrust force and cutterhead torque was 0.19 and 0.52, respectively. The results showed that the SFL outperformed the other models in predicting the target parameters. In this method, the R2 obtained between observed and predicted values for thrust force and cutterhead torque is 0.73 and 0.63, respectively. The sensitivity analysis results show that the internal friction angle (φ) and standard penetration number (SPT) have the greatest impact on thrust force. Also, earth pressure and overburden thickness have the highest effect on cutterhead torque.

Analytical and experimental exploration of sobol sequence based DoE for response estimation through hybrid simulation and polynomial chaos expansion

  • Rui Zhang;Chengyu Yang;Hetao Hou;Karlel Cornejo;Cheng Chen
    • Smart Structures and Systems
    • /
    • 제31권2호
    • /
    • pp.113-130
    • /
    • 2023
  • Hybrid simulation (HS) has attracted community attention in recent years as an efficient and effective experimental technique for structural performance evaluation in size-limited laboratories. Traditional hybrid simulations usually take deterministic properties for their numerical substructures therefore could not account for inherent uncertainties within the engineering structures to provide probabilistic performance assessment. Reliable structural performance evaluation, therefore, calls for stochastic hybrid simulation (SHS) to explicitly account for substructure uncertainties. The experimental design of SHS is explored in this study to account for uncertainties within analytical substructures. Both computational simulation and laboratory experiments are conducted to evaluate the pseudo-random Sobol sequence for the experimental design of SHS. Meta-modeling through polynomial chaos expansion (PCE) is established from a computational simulation of a nonlinear single-degree-of-freedom (SDOF) structure to evaluate the influence of nonlinear behavior and ground motions uncertainties. A series of hybrid simulations are further conducted in the laboratory to validate the findings from computational analysis. It is shown that the Sobol sequence provides a good starting point for the experimental design of stochastic hybrid simulation. However, nonlinear structural behavior involving stiffness and strength degradation could significantly increase the number of hybrid simulations to acquire accurate statistical estimation for the structural response of interests. Compared with the statistical moments calculated directly from hybrid simulations in the laboratory, the meta-model through PCE gives more accurate estimation, therefore, providing a more effective way for uncertainty quantification.

Evaluating analytical and statistical models in order to estimate effective grouting pressure

  • Amnieh, Hassan Bakhshandeh;Masoudi, Majid;Karbala, Mohammdamin
    • Computers and Concrete
    • /
    • 제20권3호
    • /
    • pp.275-282
    • /
    • 2017
  • Grouting is an operation often carried out to consolidate and seal the rock mass in dam sites and tunnels. One of the important parameters in this operation is grouting pressure. In this paper, analytical models used to estimate pressure are investigated. To validate these models, grouting data obtained from Seymareh and Aghbolagh dams were used. Calculations showed that P-3 model from Groundy and P-25 model obtained from the results of grouting in Iran yield the most accurate predictions of the pressure and measurement errors compared to the real values in P-25 model in this dams are 12 and 14.33 Percent and in p-3 model are 12.25 and 16.66 respectively. Also, SPSS software was applied to define the optimum relation for pressure estimation. The results showed a high correlation between the pressure with the depth of the section, the amount of water take, rock quality degree and grout volume, so that the square of the multiple correlation coefficient among the parameters in this dams were 0.932 and 0.864, respectively. This indicates that regression results can be used to predict the amount of pressure. Eventually, the relationship between the parameters was obtained with the correlation coefficient equal to 0.916 based on the data from both dams generally and shows that there is a desirable correlation between the parameters. The outputs of the program led to the multiple linear regression equation of P=0.403 Depth+0.013 RQD+0.011 LU-0.109 V+0.31 that can be used in estimating the pressure.