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Abstract. A stochastic process {4, n=1, 2, ...} is an arithmetic process (AP) if there exists some real number,
d, so that {4, + (n—1)d, n=1, 2, ...} is a renewal process (RP). AP is a stochastically monotonic process and
can be used for modelling a point process, i.e. point events occurring in a haphazard way in time (or space),
especially with a trend. For example, the events may be failures arising from a deteriorating machine; and such a
series of failures is distributed haphazardly along a time continuum. In this paper, we discuss estimation
procedures for an AP, similar to those for a geometric process (GP) proposed by Lam (1992). Two statistics are
suggested for testing whether a given process is an AP. If this is so, we can estimate the parameters d, 1,4, and
0%, of the AP based on the techniques of simple linear regression, where s, and ¢% are the mean and
variance of the first random variable A4, respectively. In this paper, the procedures are, for the most part,
discussed in reliability terminology. Of course, the methods are valid in any area of application, in which case
they should be interpreted accordingly.
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1. INTRODUCTION

In the statistical analysis of a series of events, a
common method is to model the series using a point
process. To start with, it is essential to test whether the
data of successive inter-event times, denoted by X, (i = 1,
2, ...), demonstrate a trend. If there is no trend, we may
model the data using a stationary point process (e.g. by a
counting process which has stationary, but not necessarily
independent, increments), or using a sequence of indepen-
dent and identically distributed (i.i.d.) random variables X
= X, for all i. For the latter, we may model the corre-
sponding counts of events in time using a renewal process
(RP). In particular, if X is exponentially distributed with a
rate parameter A, we may use a homogeneous Poisson
process (HPP) with a constant rate Ato model the data.
The HPP is one of the most common stochastic processes
for modelling counts of events in time (or area / volume).
This process is a standard for “randomness”, for the
assumptions involved state that events must occur indepen-
dently and any two non-overlapping or overlapping inter-
vals of the same size have the same  probability of
capturing one of the events of interest. However, in

practice the data of successive inter-event times usually
exhibit a trend. We may model them using a non-
stationary model, or using a non-homogeneous Poisson
process (NHPP) in which the rate at time 7 is a function of
t. The NHPP is a popular approach to model data having a
trend. For more details of these methods, see Cox and
Lewis (1966).

An arithmetic process (AP), which is a non-stationary
model, can be used as an alternative to the NHPP in
analysing data of inter-event times that exhibit a trend.
This appears to be a useful model for failure or repair data
arising from a single system. Consider the maintenance
problems of a repairable system and bear in mind that
most repairable systems, like engines, are deteriorative.
Two basic characteristics of a deteriorating system are that
because of ageing or irreversible wear, the system’s
successive operating times decrease and so the system’s
life is finite; while because it is more difficult and hence
takes more time to rectify accumulated wear, the correspon-
ding consecutive repair times increase until finally the
system is beyond repair. Most of the research on the
maintenance of a deteriorating system has made the
minimal repair assumption. Minimal repair means that a
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failed system will function, after repair, with the same rate
of failure and the same effective age as at the epoch of the
last failure. For a minimal repair model where repair time
is assumed negligible, an NHPP in which the rate of
occurrence of failures (ROCOF) over time is monotone
can provide at least a good first-order model for a
deteriorating system; see Ascher and Feingold (1984). If
repair time has to be taken into account, the NHPP
approach cannot be used. Based on this understanding, an
AP approach proposed by Leung (2001) is considered
more relevant, realistic and direct for the modelling of the
maintenance problems in a deteriorating system.

2. ARITHMETIC PROCESSES

A definition of an arithmetic process (AP) is given
below.
Definition: Given a sequence of non-negative random
variables 4}, 4, ... if for some real number d, {4, + (n—1)
d,n=1,2, ..} forms a renewal process (RP), then {4,, n
=1,2,...} is an AP. d is called the common difference of
the AP.

Three specialisations of an AP are given below.
If de (0, A
n—1
of the first random variable 4, then the AP is called a
decreasing AP. If 4 <0, then the AP is called an increasing
AP. If d = 0, then the AP reduces to an RP.

The upper bound of d in the first specialisation can
be obtained as follows. By the definition, the expression

], where n=2,3, ... and p,, is the mean

for the general term of an AP is given by A, iAl ~(n—-1)d.
Taking expectations on both sides of this expression, and
remembering that 4, is a non-negative random variable
and hence E(A,)=pu, 20 for n=1,2,..; we obtain,
after transposition, the upper bound of ¢ given by
Zl’l—f‘—l for n=2, 3, .... Clearly, the positive integer # is
limited for a decreasing AP, Moreover, if the value of d is
close to its upper bound, we will obtain a short sequence
of non-negative random variables. However, such a
subtractive process is likely to be useful in a deteriorating
system (e.g. an engine), which fails rarely (e.g. two or
three times) over its usual span of life (e.g. ten years). This
implicitly means that the system wears out, between two
successive failures, to such an extraordinary extent that the
corresponding system’s successive operating time decreases
dramatically.

Therefore, for a deteriorating system, it is reasonable
to assume that the successive operating times of the
system form a decreasing AP; whereas the corresponding
consecutive repair times constitute an increasing AP.
However, the replacement times for the system are usually
stochastically the same no matter how old the used system
is; hence, these will form an RP. This is the motivation
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behind the introduction of the AP approach. .

Given an AP {4, n=1,2,..}, we have A, =A —
{(n-1d by the definition. Therefore, the means and
variances of 4, can respectively be written as

M4, =E(A)
=E(A)-(n-Dd=pu, —(n-1)d (1
and
oL =V(4,)
=V[A —(n-1d]=V(A)=0} )

Thus, d, x,, and ¢%, are the most important para
meters in an AP because the means and variances of the
A,s are completely determined by these three parameters.
In view of this fact, in this paper the author will define the
procedure for applying the AP approach in a reliability
context and derive estimators for the three fundamental
parameters. Now, there are two questions. The first is,
given a set of data of successive inter-event times of a
point process, how do we test whether this is consistent
with an AP? The second question is, if the data do come
from an AP, how can we estimate the parameters o, 4,
and 6% ?

In this paper, the statistical inference for an AP is
investigated and these two questions are answered using
well-known statistical methods. In Section 3, Laplace’s
statistic is recommended for testing whether a process has
a trend, and a graphical technique is suggested for testing
whether a process is an AP as well as having a trend. In
Section 4, the parameters d, @ and o7 are estimated using
simple lincar regression techniques. In Section 5, a
statistic is introduced for testing whether a process is an
AP. In Section 6, first z, and ¢% are estimated based on
the results derived in Section 4, and then x4 and ¢% for
n=2,73, ... are correspondingly estimated using equations
(1) and (2) respectively. In Section 7, two concluding
remarks are given. Finally, the derivations of some key
results are outlined in the Appendix.

3. TESTING FOR TRENDS

Given the data {4,,n=1,2, ...} of successive inter-
event times of a point process, first of all we need to test
whether the A,s are identically distributed by checking for
the existence of a trend. To do this, many techniques
discussed in Ascher and Feingold (1984) can be used.
Laplace's trend test for a time-truncated data set (where
the time of the conclusion of observation is fixed and the
number of events is random) or for an event-truncated data
set (where the number of events is fixed before observa-
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tion begins and the time of the conclusion of the observa-
tion is random) is used for ease of manipulation and
interpretation.

Rigdon and Basu (1989), page 259 reach the conclu-
sion that “using any model for event times, one should
indicate the time that data collection started and the time
that it ceased. This is necessary so that the appropriate
analysis, that is, an analysis based on time-truncated or
event-truncated data, can be applied and maximum
information can be obtained from the data. For time-
truncated data, the time between the last event and the
termination of the test contains some information that
should not be wasted.”

Another possible approach is to use the simple linear
regression techniques. To start with, let

W, =A,+(n-1)d 3)
From the definition, #,s are i.i.d. and can be written as

W, =a+e, @
where
EW,)=0a ®))

and eg,s are also i.i.d. (not necessarily normally distributed
if our objective is estimation only, e.g. see Gujarati
(1988), page 281) with

E(e,)=0 and V(e,)=0%=0! (6)
Combining equations (3) and (4) yields
A,=—dn—-1)+a+e, for n=1,2,-N (7)

which is a simple linear regression equation. Therefore,
we can plot 4, against (n—1) for n=1,2,.., N 1o see
whether there is a linear relationship between them.
Clearly, this is also useful for testing if the observations
{4, n=1, 2, ...} come from an AP as well as having a
trend.

4. ESTIMATING THE PARAMETERS 4,
AND g

We can estimate the parameters d, @ and o2 using
the simple linear regression method. The least squares

point estimates 4,8 and 6 + of the parameters d, @ and
o2 are calculated respectively using the following formulae:

6(N-1)3A —125 (n-1)A,
(N-D)N(N +1)

d= ®)

N
gt dw-D
N 2
N N (€)
22N -DI A, -63(n-DA,
— n=l n=1
- N(N+1)
and
N 1/x ¥
§ a2 ——( ZA,,]
6-2 — n=1 N n=1
€ N-2
(10)
—&{(N‘” S, —i(n—nAn}
n=1 n=1
N N-2

The derivations of equations (8) to (10) are outlined
in the Appendix.

5. DISTINGUISHING A RENEWAL PROCESS
FROM AN ARITHMETIC PROCESS

We test whether the data comes from an arithmetic
process or a renewal process.
Null hypothesis Ho : d=0
Alternative hypothesis H : d =0
The #-test statistic is given by

- ~d\J(N-DN(N +1) an
V126,

where 1 is distributed as a Student’s # with (N~ 2) degrees
of freedom if the null hypothesis of d=0 applies. One
point worth noting is that for testing purposes, each &, is
approximately normally distributed, e.g. see Gujarati
(1988), page 282. It is difficult to evaluate the normality
assumption for a sample of only 20 observations, and
formal test procedures are presented in Ramsey and
Ramsey (1990).

If | #| > critical value #v—s2.9 ¢25, then Hp is rejected at
the 5% level of significance, i.e. the data set {4, A2, ...,
Ay} comes from an AP.

6. ESTIMATING THE MEANS AND
VARIANCES OF A.S

First, the mean and variance of A; are estimated
respectively using the relevant estimators with formulae
given below.

From the definition, #,s are i.i.d., we have

EW,) =,
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and
VW, =0y =0}

From equations (5), (4) and (6), we obtain

EW,)=0
and
VW,) =V(a+e,) =V(E,) =0]
Therefore, the first estimators for , and oﬁ] are
denoted and given by
fir =0 (12)
and
G}, =6 (13)

Alternatively, since W,s are iid. with mean
tw,=pa and variance o% =%, it is plausible to

estimate p, and ¢% by the sample mean and sample
variance of W,s, where W, =A,+(n-1)d. The second possi-

ble estimators for 12,4, and ¢%, are given by

N A N

YW, XA, +(n-1d]
Y - =1 e =1
.uA,,l- N - N
S A
ZA A -1
N 2

and

SIA +(n-1)dT’
=1
4 N-1

2

N A
{E[A” +(n—- l)d]}
n=1

N _ a2
- =O-A”

N-1

(14)

Hence, we only have the second estimator for ¢% denoted
by G2 and given by equation (14). .
=24,

n=l

We can also deduce #A,1 as follows. Let
N
=X[A4 -(=Dd] e,

E(sN)=§E<A,>—d§<n—1>

dN(N -1)

After transposition, we have

_EGSy), dN-1
ATON 2

and the possible estimator for w4, is

N
L Sy dw-n Zh dv-p _o=p
AN 2 N 2 At
It is also possible to obtain second and third
estimators for x,4,. In view of the fact that E(W,) = x4,
we can write
W,=pu, 1+48,) (15)
(a) We have
E v, =1+E(@3,)
Hy
this follows that
E(5,)=0 (16)
(b) We obtain
v| W =V(1+86,)
A
MUASHYZES)
Al
this follows that
o,
V6, =—5 (17)

A

(c) Taking logarithms for equations (4) and (15) obtain
respectively

InW, =1n[a(1+8—"ﬂ=1na+1n(1+£—") (18)
o o

(19)

and
InW, =Inp, +In(1+6,)

Taking expectation on equations (18) and (19), equating
them, and expanding the logarithm series, we have

e g

lnoz+E“3 s
o 20° 3a
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8 &)
= E P T F PN
Ing, + [6,, 5 + 3 J

1
o2

1na+lE(s,,)— E(e})
o 2

=Ing, +E(6")—?12-E(63)
1
Ing — V(g
no o €,)
=lnp, --;—V(6,,) by equations (6) and (16)

2
£

Z(XZ

Ino—

~

o}
=lnp, - 2,2 by equations (6) and (17)
Hy

(d) x4, must satisfy the equation

o’ 2
a 2\, o

Finally, we can estimate x, by u 4, which satisfies the

equation
By ) 1{64y 6
I (—?L)w[ e ]—0 (20)
a | 2 u, a
orby 2 4,5 which satisfies the equation
ty ) 1{6%, &2
Inj =2 |- =35 == |=0 1)
a | 2\ u, @

where 6,67,6 /241‘1 and & i.,z are given by equations (9),
(10), (13) and (14) respectively.

Clearly, if d = 0, the parameters z, and ¢% can be
estimated using the sample mean and sample variance
which are given by

.ﬁ(A a,)
and a2 n /’lAl)
Oy =——————
N ! N-1

(22)

Secondly, using equations (1) and (2), the means and
variances of 4, forn=2, 3, ..., N are estimated using the
following formulae.

i, =f, —(n~Dd and

6'/%” = ci’jI forn=23,.,N (23)

7. CONCLUDING REMARKS

Below are two notes concerning the statistical
inference for an AP. Note 2 reveals how the inference
method is relevant and applicable to solve reliability
(comprising inspection, maintenance, replacement, etc.)
problems.

7.1 Note (1)

Leung et al.(2002), performed some simulation studies
to evaluate various estimators of the parameters of an AP,
given by equations (12) to (14) and (20) to (22). The
authors make some suggestions, based on the results of the
simulation studies, for selecting the best estimators when

Ha, .
de (0, TA1]’ d<0 or d=0, with respect to three

different criteria. For easy reference, the recommended
estimators are summarized in Table 1, where ¢=

| % a,— #a,] 18 t}}\? deviation of 7 4, from p,,i=1,2,

Y (A,,-A,)

n=1

3,4, MSE=
error between the fitted values and observations, and ® =
¢ +V MSE. Moreover, the estimates ¢% , and 0% ,
can be compared by their standard deviations from ¢ 341.

is the mean square

7.2 Note (2)

Fitting a model to failure and/or repair data is
preliminary to utilizing an optimisation model, from
which optimal maintenance policy based on minimizing
loss, cost or downtime may be found. A system fails more
frequently as it grows older; the age T or the N th failure at
which it should be replaced to minimize the long-run
expected loss, cost or downtime per unit time may be
calculated from the model. Leung (2001) formulates an
AP replacement model; for replacement policy I" or N by
which we replace the system at period T or at the time of
the Nth failure, he individually derived explicit expres-
sions for the long-run average performance measure (e.g.
loss or its negation profit, cost, and downtime or its

Table 1. Recommended estimators for y, and ¢ %

Standard
d ¢ MSE @ Deviation
.uA, A,, :uA, & A,, o.2
A
=0 'aAM .a,q, 2 0r ﬁA,,4 :aA| 30r :aA,A 6}2\1‘3
<0 ,12,4,,1 or ﬁAl,z .ﬁAl,z .ﬁAl.z 6';,;
I R R . R
(O, ;—jf] Hy o Ha o Hy 0',2‘,'2
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complement availability) per unit of total time and those
for the long-run average performance measure per unit of
operation time, and the optimal replacement T Tor N s
analytically determined. Two models, given by equation
(4) with r, =1 and equation (5) with r.=r;=1 in Leung
(2001), used in resolving replacement problems are
extracted, namely the long-run expected loss per unit time
{(T) under policy T which is given by

{c, ~w)T + cy {il[ﬂyl -{j-1)d, ]F, (T)} + CrrUpr
=

UT)= -
T+ Sty = (=D I, () 4ty
(249

and the long-run expected loss per unit time / (V) under
policy N which is given by

e —w){% bu., -v -1)du]}+cf{¥{z;;,,, ~(N-2)d, ]}+c,wu,w

Ny =
%[Zﬂx. — (-1, ]+%[2‘uy, ~(N~2)d, |+ ug,

(25)

where F; is the cumulative distribution function of Z‘, X,
ttx, is the mean operating time after installation, py is

the mean repair time after the first failure, d, and d, are the
common differences corresponding to the failure and
repair processes of a system respectively, ¢, is the average
operating cost rate, ¢y is the average repair cost rate, cer
{or crn) is the average replacement cost rate under policy
T (or N), urr (or ugw) is the fixed replacement downtime
under policy T (or ), and w is the average revenue rate of
a working system.

We notice that Models (24) and (25) depend on the
AP through the parameters d;, ds and g, uy, only.

A case study using the results given in this paper,
Leung et al. (2002) and Leung (2001) applied to the same
set of real maintenance data of engines in Leung and Lee
(1998) was completed and the findings were compared
with those obtained in that paper. The case study was
presented in a paper entitled “An engine-maintenance case
study using arithmetic-process approach” which was
submitted to the International Journal of Industrial Engi-
neering. To illustrate the applicability of a methodology,
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the author considers a case study to be more interesting
and convincing than a numerical example.

APPENDIX

To determine the “best” fit line to the N paired-
observagons, we minimise the sura of squared errors S(d,

a)= 21[,4,, + d(n—1) — ¢]°. Partially differentiating

5(d, «) with respect to d and ¢, setting them equal to
zero and solving the associated equations simultaneously,
we obtain equations (8) and (9). It is well known that

~r_ S(a, @)

cTTNZD which is equation (10).
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