• Title/Summary/Keyword: statistical feature

Search Result 668, Processing Time 0.027 seconds

WLDF: Effective Statistical Shape Feature for Cracked Tongue Recognition

  • Li, Xiao-qiang;Wang, Dan;Cui, Qing
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.420-427
    • /
    • 2017
  • This paper proposes a new method using Wide Line Detector based statistical shape Feature (WLDF) to identify whether or not a tongue is cracked; a cracked tongue is one of the most frequently used visible features for diagnosis in traditional Chinese Medicine (TCM). We first detected a wide line in the tongue image, and then extracted WLDF, such as the maximum length of each detected region, and the ratio between maximum length and the area of the detected region. We trained a binary support vector machine (SVM) based on the WLDF to build a classifier for cracked tongues. We conducted an experiment based on our proposed scheme, using 196 samples of cracked tongues and 245 samples of non-cracked tongues. The results of the experiment indicate that the recognition accuracy of the proposed method is greater than 95%. In addition, we provide an analysis of the results of this experiment with different parameters, demonstrating the feasibility and effectiveness of the proposed scheme.

A Study on a Statistical Analysis of the Feature Information for the Dynamic Signature Verification (동적 서명의 특징 정보에 대한 통계적 분석에 관한 연구)

  • Kim, Jin-Whan;Cho, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1693-1698
    • /
    • 2009
  • This paper is a research on the feature information using direction information and adjusting constant w for the dynamic signature verification. We could improved processing time and reduce signature database without the increase of error rate. We could confirmed these results by using statistical method T-test.

A Study on Diagnosis of Transformers Aging Sate Using Wavelet Transform and Neural Network (이산웨이블렛 변환과 신경망을 이용한 변압기 열화상태 진단에 관한 연구)

  • 박재준;송영철;전병훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.84-92
    • /
    • 2001
  • In this papers, we proposed the new method in order to diagnosis aging state of transformers. For wavelet transform, Daubechies filter is used, we can obtain wavelet coefficients which is used to extract feature of statistical parameters (maximum value, average value, dispersion skewness, kurtosis) about each acoustic emission signal. Also, these coefficients are used to identify normal and fault signal of internal partial discharge in transformer. As improved method for classification use neural network. Extracted statistical parameters are input into an back-propagation neural network. The number of neurons of hidden layer are obtained through Result of Cross-Validation. The network, after training, can decide whether the test signal is early aging state, alst aging state or normal state. In quantity analysis, capability of proposed method is superior to compared that of classical method.

  • PDF

Image Feature Detection and Contrast Enhancement Algorithms Based on Statistical Tests

  • Kim, Yeong-Hwa;Nam, Ji-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.385-399
    • /
    • 2007
  • In many image processing applications, a random noise makes some trouble since most video enhancement functions produce visual artifacts if a priori of the noise is incorrect. The basic difficulty is that the noise and the signal are difficult to be distinguished. Typical unsharp masking (UM) enhances the visual appearances of images, but it also amplifies the noise components of the image. Hence, the applications of a UM are limited when noises are presented. This paper proposed statistical algorithms based on parametric and nonparametric tests to adaptively enhance the image feature and the noise combining while applying UM. With the proposed algorithm, it is made possible to enhance the local contrast of an image without amplifying the noise.

  • PDF

A Statistical Study of CMP Process in Various Scales (CMP 프로세스의 통계적인 다규모 모델링 연구)

  • 석종원
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2110-2117
    • /
    • 2003
  • A physics-based material removal model in various scales is described and a feature scale simulation for a chemical mechanical polishing (CMP) process is performed in this work. Three different scales are considered in this model, i.e., abrasive particle scale, asperity scale and wafer scale. The abrasive particle and the asperity scales are combined together and then homogenized to result in force balance conditions to be satisfied in the wafer scale using an extended Greenwood-Williamson and Whitehouse-Archard statistical model that takes into consideration the joint distribution of asperity heights and asperity tip radii. The final computation is made to evaluate the material removal rate in wafer scale and a computer simulation is performed for detailed surface profile variations on a representative feature. The results show the dependence of the material removal rate on the joint distribution, applied external pressure, relative velocity, and other operating conditions and design parameters.

An Adaptive Classifier for 3-D Planar Object Recognition Based on Uncertainty of Features by Binocular Stereo Method (Binocular Stereo 방법에 의한 3차원 평면 물체의 특징값의 불확실성을 고려한 적응분류기)

  • 권중장;김성대
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.4
    • /
    • pp.92-103
    • /
    • 1993
  • In this paper, we propose an adaptive classifier based on uncertainty of features for 3D planar object recognition. First, we investigate the uncertainty of depth information and the feature values of 3D planar object by numerical method. And, we observed that the statistical behavior of feature is dependent on the position and orientation of objects. After that, the approximation of the statistical behavior is executed. Subsequently, the recognition procedure is executed by the adaptive classifier. By computer simulation, we confirmed that the proposed classifier is useful for 3D planar object recognition.

  • PDF

Classification of Welding Defects in Austenitic Stainless Steel by Neural Pattern Recognition of Ultrasonic Signal (초음파신호의 신경망 형상인식법을 이용한 오스테나이트 스테인레스강의 용접부결함 분류에 관한 연구)

  • Lee, Gang-Yong;Kim, Jun-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1309-1319
    • /
    • 1996
  • The research for the classification of the natural defects in welding zone is performd using the neuro-pattern recognition technology. The signal pattern recognition package including the user's defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection, The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian calssifier are compared and discussed. The neuro-pattern recognition technique is applied to the classificaiton of such natural defects as root crack, incomplete penetration, lack of fusion, slag inclusion, porosity, etc. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the natural welding defects.

Motion classification using distributional features of 3D skeleton data

  • Woohyun Kim;Daeun Kim;Kyoung Shin Park;Sungim Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.551-560
    • /
    • 2023
  • Recently, there has been significant research into the recognition of human activities using three-dimensional sequential skeleton data captured by the Kinect depth sensor. Many of these studies employ deep learning models. This study introduces a novel feature selection method for this data and analyzes it using machine learning models. Due to the high-dimensional nature of the original Kinect data, effective feature extraction methods are required to address the classification challenge. In this research, we propose using the first four moments as predictors to represent the distribution of joint sequences and evaluate their effectiveness using two datasets: The exergame dataset, consisting of three activities, and the MSR daily activity dataset, composed of ten activities. The results show that the accuracy of our approach outperforms existing methods on average across different classifiers.

One-dimensional CNN Model of Network Traffic Classification based on Transfer Learning

  • Lingyun Yang;Yuning Dong;Zaijian Wang;Feifei Gao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.420-437
    • /
    • 2024
  • There are some problems in network traffic classification (NTC), such as complicated statistical features and insufficient training samples, which may cause poor classification effect. A NTC architecture based on one-dimensional Convolutional Neural Network (CNN) and transfer learning is proposed to tackle these problems and improve the fine-grained classification performance. The key points of the proposed architecture include: (1) Model classification--by extracting normalized rate feature set from original data, plus existing statistical features to optimize the CNN NTC model. (2) To apply transfer learning in the classification to improve NTC performance. We collect two typical network flows data from Youku and YouTube, and verify the proposed method through extensive experiments. The results show that compared with existing methods, our method could improve the classification accuracy by around 3-5%for Youku, and by about 7 to 27% for YouTube.

A Wavelet based Feature Selection Method to Improve Classification of Large Signal-type Data (웨이블릿에 기반한 시그널 형태를 지닌 대형 자료의 feature 추출 방법)

  • Jang, Woosung;Chang, Woojin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.2
    • /
    • pp.133-140
    • /
    • 2006
  • Large signal type data sets are difficult to classify, especially if the data sets are non-stationary. In this paper, large signal type and non-stationary data sets are wavelet transformed so that distinct features of the data are extracted in wavelet domain rather than time domain. For the classification of the data, a few wavelet coefficients representing class properties are employed for statistical classification methods : Linear Discriminant Analysis, Quadratic Discriminant Analysis, Neural Network etc. The application of our wavelet-based feature selection method to a mass spectrometry data set for ovarian cancer diagnosis resulted in 100% classification accuracy.