The Effects of Online Service Quality on Consumer Satisfaction and Loyalty Intention -About Booking and Issuing Air Tickets on Website- (온라인 서비스 품질이 고객만족 및 충성의도에 미치는 영향 -항공권 예약.발권 웹사이트를 중심으로-)
- Park, Jong-Gee;Ko, Do-Eun;Lee, Seung-Chang
-
- Journal of Distribution Research
- /
- v.15 no.3
- /
- pp.71-110
- /
- 2010
-
1. Introduction Today Internet is recognized as an important way for the transaction of products and services. According to the data surveyed by the National Statistical Office, the on-line transaction in 2007 for a year, 15.7656 trillion, shows a 17.1%(2.3060 trillion won) increase over last year, of these, the amount of B2C has been increased 12.0%(10.2258 trillion won). Like this, because the entry barrier of on-line market of Korea is low, many retailers could easily enter into the market. So the bigger its scale is, but on the other hand, the tougher its competition is. Particularly due to the Internet and innovation of IT, the existing market has been changed into the perfect competitive market(Srinivasan, Rolph & Kishore, 2002). In the early years of on-line business, they think that the main reason for success is a moderate price, they are awakened to its importance of on-line service quality with tough competition. If it's not sure whether customers can be provided with what they want, they can use the Web sites, perhaps they can trust their products that had been already bought or not, they have a doubt its viability(Parasuraman, Zeithaml & Malhotra, 2005). Customers can directly reserve and issue their air tickets irrespective of place and time at the Web sites of travel agencies or airlines, but its empirical studies about these Web sites for reserving and issuing air tickets are insufficient. Therefore this study goes on for following specific objects. First object is to measure service quality and service recovery of Web sites for reserving and issuing air tickets. Second is to look into whether above on-line service quality and on-line service recovery have an impact on overall service quality. Third is to seek for the relation with overall service quality and customer satisfaction, then this customer satisfaction and loyalty intention. 2. Theoretical Background 2.1 On-line Service Quality Barnes & Vidgen(2000; 2001a; 2001b; 2002) had invented the tool to measure Web sites' quality four times(called WebQual). The WebQual 1.0, Step one invented a measuring item for information quality based on QFD, and this had been verified by students of UK business school. The Web Qual 2.0, Step two invented for interaction quality, and had been judged by customers of on-line bookshop. The WebQual 3.0, Step three invented by consolidating the WebQual 1.0 for information quality and the WebQual2.0 for interactionquality. It includes 3-quality-dimension, information quality, interaction quality, site design, and had been assessed and confirmed by auction sites(e-bay, Amazon, QXL). Furtheron, through the former empirical studies, the authors changed sites quality into usability by judging that usability is a concept how customers interact with or perceive Web sites and It is used widely for accessing Web sites. By this process, WebQual 4.0 was invented, and is consist of 3-quality-dimension; information quality, interaction quality, usability, 22 items. However, because WebQual 4.0 is focusing on technical part, it's usable at the Website's design part, on the other hand, it's not usable at the Web site's pleasant experience part. Parasuraman, Zeithaml & Malhorta(2002; 2005) had invented the measure for measuring on-line service quality in 2002 and 2005. The study in 2002 divided on-line service quality into 5 dimensions. But these were not well-organized, so there needed to be studied again totally. So Parasuraman, Zeithaml & Malhorta(2005) re-worked out the study about on-line service quality measure base on 2002's study and invented E-S-QUAL. After they invented preliminary measure for on-line service quality, they made up a question for customers who had purchased at amazon.com and walmart.com and reassessed this measure. And they perfected an invention of E-S-QUAL consists of 4 dimensions, 22 items of efficiency, system availability, fulfillment, privacy. Efficiency measures assess to sites and usability and others, system availability measures accurate technical function of sites and others, fulfillment measures promptness of delivering products and sufficient goods and others and privacy measures the degree of protection of data about their customers and so on. 2.2 Service Recovery Service industries tend to minimize the losses by coping with service failure promptly. This responses of service providers to service failure mean service recovery(Kelly & Davis, 1994). Bitner(1990) went on his study from customers' view about service providers' behavior for customers to recognize their satisfaction/dissatisfaction at service point. According to them, to manage service failure successfully, exact recognition of service problem, an apology, sufficient description about service failure and some tangible compensation are important. Parasuraman, Zeithaml & Malhorta(2005) approached the service recovery from how to measure, rather than how to manage, and moved to on-line market not to off-line, then invented E-RecS-QUAL which is a measuring tool about on-line service recovery. 2.3 Customer Satisfaction The definition of customer satisfaction can be divided into two points of view. First, they approached customer satisfaction from outcome of comsumer. Howard & Sheth(1969) defined satisfaction as 'a cognitive condition feeling being rewarded properly or improperly for their sacrifice.' and Westbrook & Reilly(1983) also defined customer satisfaction/dissatisfaction as 'a psychological reaction to the behavior pattern of shopping and purchasing, the display condition of retail store, outcome of purchased goods and service as well as whole market.' Second, they approached customer satisfaction from process. Engel & Blackwell(1982) defined satisfaction as 'an assessment of a consistency in chosen alternative proposal and their belief they had with them.' Tse & Wilton(1988) defined customer satisfaction as 'a customers' reaction to discordance between advance expectation and ex post facto outcome.' That is, this point of view that customer satisfaction is process is the important factor that comparing and assessing process what they expect and outcome of consumer. Unlike outcome-oriented approach, process-oriented approach has many advantages. As process-oriented approach deals with customers' whole expenditure experience, it checks up main process by measuring one by one each factor which is essential role at each step. And this approach enables us to check perceptual/psychological process formed customer satisfaction. Because of these advantages, now many studies are adopting this process-oriented approach(Yi, 1995). 2.4 Loyalty Intention Loyalty has been studied by dividing into behavioral approaches, attitudinal approaches and complex approaches(Dekimpe et al., 1997). In the early years of study, they defined loyalty focusing on behavioral concept, behavioral approaches regard customer loyalty as "a tendency to purchase periodically within a certain period of time at specific retail store." But the loyalty of behavioral approaches focuses on only outcome of customer behavior, so there are someone to point the limits that customers' decision-making situation or process were neglected(Enis & Paul, 1970; Raj, 1982; Lee, 2002). So the attitudinal approaches were suggested. The attitudinal approaches consider loyalty contains all the cognitive, emotional, voluntary factors(Oliver, 1997), define the customer loyalty as "friendly behaviors for specific retail stores." However these attitudinal approaches can explain that how the customer loyalty form and change, but cannot say positively whether it is moved to real purchasing in the future or not. This is a kind of shortcoming(Oh, 1995). 3. Research Design 3.1 Research Model Based on the objects of this study, the research model derived is
. 3.2 Hypotheses 3.2.1 The Hypothesis of On-line Service Quality and Overall Service QualityThe relation between on-line service quality and overall service quality I-1. Efficiency of on-line service quality may have a significant effect on overall service quality. I-2. System availability of on-line service quality may have a significant effect on overall service quality. I-3. Fulfillment of on-line service quality may have a significant effect on overall service quality. I-4. Privacy of on-line service quality may have a significant effect on overall service quality. 3.2.2 The Hypothesis of On-line Service Recovery and Overall Service Quality The relation between on-line service recovery and overall service quality II-1. Responsiveness of on-line service recovery may have a significant effect on overall service quality. II-2. Compensation of on-line service recovery may have a significant effect on overall service quality. II-3. Contact of on-line service recovery may have a significant effect on overall service quality. 3.2.3 The Hypothesis of Overall Service Quality and Customer Satisfaction The relation between overall service quality and customer satisfaction III-1. Overall service quality may have a significant effect on customer satisfaction. 3.2.4 The Hypothesis of Customer Satisfaction and Loyalty Intention The relation between customer satisfaction and loyalty intention IV-1. Customer satisfaction may have a significant effect on loyalty intention. 3.2.5 The Hypothesis of a Mediation Variable Wolfinbarger & Gilly(2003) and Parasuraman, Zeithaml & Malhotra(2005) had made clear that each dimension of service quality has a significant effect on overall service quality. Add to this, the authors analyzed empirically that each dimension of on-line service quality has a positive effect on customer satisfaction. With that viewpoint, this study would examine if overall service quality mediates between on-line service quality and each dimension of customer satisfaction, keeping on looking into the relation between on-line service quality and overall service quality, overall service quality and customer satisfaction. And as this study understands that each dimension of on-line service recovery also has an effect on overall service quality, this would examine if overall service quality also mediates between on-line service recovery and each dimension of customer satisfaction. Therefore these hypotheses followed are set up to examine if overall service quality plays its role as the mediation variable. The relation between on-line service quality and customer satisfaction V-1. Overall service quality may mediate the effects of efficiency of on-line service quality on customer satisfaction. V-2. Overall service quality may mediate the effects of system availability of on-line service quality on customer satisfaction. V-3. Overall service quality may mediate the effects of fulfillment of on-line service quality on customer satisfaction. V-4. Overall service quality may mediate the effects of privacy of on-line service quality on customer satisfaction. The relation between on-line service recovery and customer satisfaction VI-1. Overall service quality may mediate the effects of responsiveness of on-line service recovery on customer satisfaction. VI-2. Overall service quality may mediate the effects of compensation of on-line service recovery on customer satisfaction. VI-3. Overall service quality may mediate the effects of contact of on-line service recovery on customer satisfaction. 4. Empirical Analysis 4.1 Research design and the characters of data This empirical study aimed at customers who ever purchased air ticket at the Web sites for reservation and issue. Total 430 questionnaires were distributed, and 400 were collected. After surveying with the final questionnaire, the frequency test was performed about variables of sex, age which is demographic factors for analyzing general characters of sample data. Sex of data is consist of 146 of male(42.7%) and 196 of female(57.3%), so portion of female is a little higher. Age is composed of 11 of 10s(3.2%), 199 of 20s(58.2%), 105 of 30s(30.7%), 22 of 40s(6.4%), 5 of 50s(1.5%). The reason that portions of 20s and 30s are higher can be supposed that they use the Internet frequently and purchase air ticket directly. 4.2 Assessment of measuring scales This study used the internal consistency analysis to measure reliability, and then used the Cronbach' $\alpha$ to assess this. As a result of reliability test, Cronbach'$\alpha$ value of every component shows more than 0.6, it is found that reliance of the measured variables are ensured. After reliability test, the explorative factor analysis was performed. the factor sampling was performed by the Principal Component Analysis(PCA), the factor rotation was performed by the Varimax which is good for verifying mutual independence between factors. By the result of the initial factor analysis, items blocking construct validity were removed, and the result of the final factor analysis performed for verifying construct validity is followed above. 4.3 Hypothesis Testing 4.3.1 Hypothesis Testing by the Regression Analysis(SPSS) 4.3.2 Analysis of Mediation Effect To verify mediation effect of overall service quality ofand , this study used the phased analysis method proposed by Baron & Kenny(1986) generally used. As shows, Step 1 and Step 2 are significant, and mediation variable has a significant effect on dependent variables and so does independent variables at Step 3, too. And there needs to prove the partial mediation effect, independent variable's estimate ability at Step 3(Standardized coefficient
$\beta$ eta : efficiency=.164, system availability=.074, fulfillment=.108, privacy=.107) is smaller than its estimate ability at Step 2(Standardized coefficient$\beta$ eta : efficiency=.409, system availability=.227, fulfillment=.386, privacy=.237), so it was proved that overall service quality played a role as the partial mediation between on-line service quality and satisfaction. Asshows, Step 1 and Step 2 are significant, and mediation variable has a significant effect on dependent variables and so does independent variables at Step 3, too. And there needs to prove the partial mediation effect, independent variable's estimate ability at Step 3(Standardized coefficient
$\beta$ eta : responsiveness=.164, compensation=.117, contact=.113) is smaller than its estimate ability at Step 2(Standardized coefficient$\beta$ eta : responsiveness=.409, compensation=.386, contact=.237), so it was proved that overall service quality played a role as the partial mediation between on-line service recovery and satisfaction. Verified results on the basis of empirical analysis are followed. First, as the result of, it shows that all were chosen, so on-line service quality has a positive effect on overall service quality. Especially fulfillment of overall service quality has the most effect, and then efficiency, system availability, privacy in order. Second, as the result of , it shows that all were chosen, so on-line service recovery has a positive effect on overall service quality. Especially responsiveness of overall service quality has the most effect, and then contact, compensation in order. Third, as the result of and , it shows that and all were chosen, so overall service quality has a positive effect on customer satisfaction, customer satisfaction has a positive effect on loyalty intention. Fourth, as the result of and , it shows that and all were chosen, so overall service quality plays a role as the partial mediation between on-line service quality and customer satisfaction, on-line service recovery and customer satisfaction. 5. Conclusion This study measured and analyzed service quality and service recovery of the Web sites that customers made a reservation and issued their air tickets, and by improving customer satisfaction through the result, this study put its final goal to grope how to keep loyalty customers. On the basis of the result of empirical analysis, suggestion points of this study are followed. First, this study regarded E-S-QUAL that measures on-line service quality and E-RecS-QUAL that measures on-line service recovery as variables, so it overcame the limit of existing studies that used modified SERVQUAL to measure service quality of the Web sites. Second, it shows that fulfillment and efficiency of on-line service quality have the most significant effect on overall service quality. Therefore the Web sites of reserving and issuing air tickets should try harder to elevate efficiency and fulfillment. Third, privacy of on-line service quality has the least significant effect on overall service quality, but this may be caused by un-assurance of customers whether the Web sites protect safely their confidential information or not. So they need to notify customers of this fact clearly. Fourth, there are many cases that customers don't recognize the importance of on-line service recovery, but if they would think that On-line service recovery has an effect on customer satisfaction and loyalty intention, as its importance is very significant they should prepare for that. Fifth, because overall service quality has a positive effect on customer satisfaction and loyalty intention, they should try harder to elevate service quality and service recovery of the Web sites of reserving and issuing air tickets to maximize customer satisfaction and to secure loyalty customers. Sixth, it is found that overall service quality plays a role as the partial mediation, but now there are rarely existing studies about this, so there need to be more studies about this. Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)
- Kim, Sun Woong;Choi, Heung Sik
-
- Journal of Intelligence and Information Systems
- /
- v.23 no.2
- /
- pp.107-122
- /
- 2017
-
Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.
이메일무단수집거부
- 본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나 그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며, 이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
- [게시일 2004년 10월 1일]
이용약관
-
제 1 장 총칙
- 제 1 조 (목적) 이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
- 제 2 조 (용어의 정의) ① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을 말합니다. ② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여 받은 자를 말합니다. ③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을 말합니다. ④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
- 제 3 조 (이용약관의 효력 및 변경) ① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다. ② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의 초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을 변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전 내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
- 제 4 조(약관 외 준칙) ① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다. ② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
-
제 2 장 이용계약의 체결
- 제 5 조 (이용계약의 성립 등) ① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한 온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다. ② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을 포함합니다.
- 제 6 조 (회원가입) 서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
- 제 7 조 (개인정보의 보호 및 사용) 당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
- 제 8 조 (이용 신청의 승낙과 제한) ① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다. ② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다. - 이용계약 신청서의 내용을 허위로 기재한 경우 - 기타 규정한 제반사항을 위반하며 신청하는 경우
- 제 9 조 (회원 ID 부여 및 변경 등) ① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다. ② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를 해지하고 재가입해야 합니다. ③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
-
제 3 장 계약 당사자의 의무
- 제 10 조 (KISTI의 의무) ① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록 하여야 합니다. ② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다. ③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를 거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야 합니다.
- 제 11 조 (회원의 의무) ① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며, 허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다. ② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된 ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다. ③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
-
제 4 장 서비스의 이용
- 제 12 조 (서비스 이용 시간) ① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을 원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에 서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를 통해 사전에 공지합니다. ② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만 이 경우 그 내용을 공지합니다.
- 제 13 조 (홈페이지 저작권) ① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고 있습니다. ② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을 받아야 합니다. ③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에 합치되게 인용할 수 있습니다. ④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우 저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
- 제 14 조 (유료서비스) ① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에 당 사이트 홈페이지를 통하여 회원에게 공지합니다. ② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
-
제 5 장 계약 해지 및 이용 제한
- 제 15 조 (계약 해지) 회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
- 제 16 조 (서비스 이용제한) ① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는 경우 서비스 이용을 제한할 수 있습니다. - 2년 이상 서비스를 이용한 적이 없는 경우 - 기타 정상적인 서비스 운영에 방해가 될 경우 ② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의 일시정지, 이용계약 해지 할 수 있습니다.
- 제 17 조 (전자우편주소 수집 금지) 회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
-
제 6 장 손해배상 및 기타사항
- 제 18 조 (손해배상) 당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
- 제 19 조 (관할 법원) 서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
- [부 칙] 1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.
Detail Search
Image Search (β)