• 제목/요약/키워드: static viscosity

검색결과 58건 처리시간 0.024초

난류 유동을 갖는 가스 포일 저널 베어링의 성능 예측 (Performance Predictions of Gas Foil Journal Bearings with Turbulent Flows)

  • 문진혁;김태호
    • Tribology and Lubricants
    • /
    • 제35권3호
    • /
    • pp.190-198
    • /
    • 2019
  • Gas foil bearings (GFBs) enable small- to medium-sized turbomachinery to operate at ultra-high speeds in a compact design by using ambient air or process gas as a lubricant. When using air or process gas, which have lower viscosity than lubricant oil, the turbomachinery has the advantage of reduced power loss from bearing friction drag. However, GFBs may have high Reynolds number, which causes turbulent flows due to process gas with low viscosity and high density. This paper analyzes gas foil journal bearings (GFJBs) with high Reynolds numbers and studies the effects of turbulent flows on the static and dynamic performance of bearings. For comparison purposes, air and R-134a gas lubricants are applied to the GFJBs. For the air lubricant, turbulence is dominant only at rotor speeds higher than 200 krpm. At those speeds, the journal eccentricity decreases, but the film thickness, power loss, and direct stiffness and damping coefficients increase. On the other hand, the R-134a gas lubricant, which that has much higher density than air, causes dominant turbulence at rotor speeds greater than 10 krpm. The turbulent flow model predicts decreased journal eccentricity but increased film thickness and power loss when compared with the lamina flow model predictions. The vertical direct stiffness and damping coefficients are lower at speeds below 100 krpm, but higher beyond that speeds for the turbulent model. The present results indicate that turbulent flow effects should be considered for accurate performance predictions of GFJBs with high Reynolds number.

Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads

  • Ismail M. Mudhaffar;Abdelbaki Chikh;Abdelouahed Tounsi;Mohammed A. Al-Osta;Mesfer M. Al-Zahrani;Salah U. Al-Dulaijan
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.167-180
    • /
    • 2023
  • This work applies a four-known quasi-3D shear deformation theory to investigate the bending behavior of a functionally graded plate resting on a viscoelastic foundation and subjected to hygro-thermo-mechanical loading. The theory utilizes a hyperbolic shape function to predict the transverse shear stress, and the transverse stretching effect of the plate is considered. The principle of virtual displacement is applied to obtain the governing differential equations, and the Navier method, which comprises an exponential term, is used to obtain the solution. Novel to the current study, the impact of the viscoelastic foundation model, which includes a time-dependent viscosity parameter in addition to Winkler's and Pasternak parameters, is carefully investigated. Numerical examples are presented to validate the theory. A parametric study is conducted to study the effect of the damping coefficient, the linear and nonlinear loadings, the power-law index, and the plate width-tothickness ratio on the plate bending response. The results show that the presence of the viscoelastic foundation causes an 18% decrease in the plate deflection and about a 10% increase in transverse shear stresses under both linear and nonlinear loading conditions. Additionally, nonlinear loading causes a one-and-a-half times increase in horizontal stresses and a nearly two-times increase in normal transverse stresses compared to linear loading. Based on the article's findings, it can be concluded that the viscosity effect plays a significant role in the bending response of plates in hygrothermal environments. Hence it shall be considered in the design.

2액형 점착 실링재의 누수보수재 평가에 관한 연구 (2 Component Adhesive Leakage Repair Sealant Evaluation)

  • 조일규;김근허;오상근
    • 한국건설순환자원학회논문집
    • /
    • 제4권4호
    • /
    • pp.396-403
    • /
    • 2016
  • 본 연구에서는 지하 콘크리트 구조물에 누수 발생 시 콘크리트 배면에 주입하여 보수를 시행하는 1액형 점착 실링재에 대해 알아보고 새로운 콘크리트 배면 주입재인 2액형 점착 실링재에 대한 평가를 진행하였다. 2액형 점착 실링재는 아스팔트 계열의 주제와 라텍스 계열의 증점제로 구성된 실링재이며, 주제와 증점제의 배합비에 따라 실링재의 점도편차가 크게 나타났다. 이에 주제와 증점제의 배합비를 투수시험을 통해 확인한 결과 주입성, 경제성, 성능을 고려하여 적정배합비를 6:1로 정하고 KS F 4935 평가를 진행하였다. 2액형 점착 실링재는 static mixer를 활용한 카트리지 타입의 용기를 이용하여 주입이 가능하고 KS F 4935 시험방법에 따라 평가를 진행한 결과 KS 기준을 만족하였다.

밸브 내장형 MR 실린더를 이용한 힘 제어에 관한 연구 (A study on the force control of MR cylinder with built-in valves)

  • 송주영;안경관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1018-1023
    • /
    • 2005
  • A new MR cylinder with built-in valves using MR fluid (MR valve) is suggested and fabricated for fluid control systems. The MR fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. The MR cylinder is composed of cylinder with small clearance and piston with electromagnet. The differential pressure is controlled by the applied magnetic field intensity. It has the characteristics of simple, compact and reliable structure. The size of MR cylinder and piston has ${\varphi}30mm{\times}300mm\;and\;{\varphi}28.5mm{\times}120mm$ in face size, respectively and 0.8mm in gap length. Through experiments, it was found that the differential pressure is controlled by the applied magnetic field intensity under little influence of the flow rate, which corresponds to a pressure control valve. The differential pressure of 0.47MPa and contact force of 320N were obtained with the input current of 1.5A. The rising time of force was 1.1s in step response of a manipulator using the MR cylinder. The effectiveness of the MR cylinder was also demonstrated through the force control.

  • PDF

MR 밸브의 전자기적 설계와 성능평가 (Electromagnetic Design and Performance Evaluation of an MR Valve)

  • 김기한;남윤주;박명관
    • 대한기계학회논문집A
    • /
    • 제32권3호
    • /
    • pp.240-249
    • /
    • 2008
  • This paper presents an electromagnetic design method for magneto-rheological (MR) valves. Since the apparent viscosity of MR fluids is adjusted by applying magnetic fields, the MR valves can control high-level fluid power without any mechanical moving parts. In order to improve the performances of the MR valve, it is important that the magnetic field is effectively supplied to the MR fluid. For the purpose, the magnetic circuit composed with the yoke for forming magnetic flux path, the electromagnetic coil and the MR fluid should be well designed. In order to improve the static characteristic of the MR valve, the length of the magnetic flux path is decreased by removing the unnecessary bulk of the yoke. Also, in order to improve its dynamic and hysteretic characteristics, the magnetic reluctance of the magnetic circuit should be increased by minimizing the cross-sectional area of the yoke through which the magnetic flux passes. After two MR valves, one is a conventional type valve and the other is the proposed one, are designed and fabricated, their performances are evaluated experimentally.

밸브 내장형 MR 실린더에 관한 연구 (A Study on the MR Cylinder with Built-in alves)

  • 송주영;안경관
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.130-136
    • /
    • 2005
  • A new MR cylinder with built-in valves using MR fluid (MR valve) is suggested and fabricated fur fluid control systems. The MR fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. The MR cylinder is composed of cylinder with small clearance and piston with electromagnet. The differential pressure is controlled by the applied magnetic field intensity. It has the characteristics of simple, compact and reliable structure. The size of MR cylinder and piston has $\varphi30mm\times300mm$ and $\varphi28.5mm\times120mm$ in face size, respectively and 0.8mm in gap length. Through experiments, it was found that the differential pressure is controlled by the applied magnetic field intensity under little influence of the flow rate, which corresponds to a pressure control valve. The differential pressure of 0.47MPa was obtained with the input current of 1.5A. The rising time was 2.3s in step response of a manipulator using the MR cylinder. The effectiveness of the MR cylinder was also demonstrated through the position control.

침장용 PLA 섬유에 대한 저온 경화유제에 관한 연구 (Study on Low Temperature Curing Emulsion of PLA Fiber for Bedding)

  • 안영무
    • 패션비즈니스
    • /
    • 제16권1호
    • /
    • pp.41-51
    • /
    • 2012
  • Polyester is mainly used as a bedding filler material. PLA fiber as an eco-friendly material for substituting polyester has a low melting temperature and therefore a hardening process is impossible. This study is to develop the oil for feather touch that can treat at the melting temperature of PLA. The slippery and soft aminosilicone emulsion, and the bulky epoxysilicone emulsion were used. They had proper viscosity and particle size for flexibility and elasticity. When using methoxy aminosilane [$H_2NSi(OCH_3)_3$] as an aminosilane and [$Zn(OCOCH_3)_2$] as a catalyst, the hardening reaction was fast and effective. Feather touch process were treated by 2 steps. At first step, aminosilicone emulsion, epoxysilicone emulsion and methylaminosilane were mixed and homogenized, and at second step, 5% blened solution of the first step, Zn catalyst 1%, distilled water 94% were treated at PLA fiber. After treatment the static friction coefficient and dynamic friction coefficient were reduced to 23.5-60.8% and 30.0-61.3% respectively, and the laundry and sun light fastnesses have not shown any decrease.

Printing performance of 3D printing cement-based materials containing steel slag

  • Zhu, Lingli;Yang, Zhang;Zhao, Yu;Wu, Xikai;Guan, Xuemao
    • Advances in concrete construction
    • /
    • 제13권4호
    • /
    • pp.281-289
    • /
    • 2022
  • 3D printing cement-based materials (3DPCBM) is an innovative rapid prototyping technology for construction materials. This study is tested on the rheological behavior, printability and buildability of steel slag (SS) content based on the extrusion system of 3D printing. 0, 8 wt%, 16 wt%, 24 wt%, 32 wt% and 40 wt% SS was replaced cement, The test results revealed that the addition of SS would increase the fluidity of the printed paste, prolong the open time and setting time, reduce the plastic viscosity, dynamic yield stress and thixotropy, and is beneficial to improve the pumping and extrudability of 3DPCBM. With the increase of SS content, the static yield stress developed slowly with time which indicated that SS is harmful to the buildability of printing paste. The content of SS in 3DPCBM can reach up to 40% at most under the condition of satisfying rheological property and buildability, it provides a reference for the subsequent introduction of SS and other industrial solid waste into 3DPCBM by explored the influence law of SS on the rheological properties of 3DPCBM.

미생물 셀룰로오스 생산을 위한 당밀의 전처리 및 생산된 셀룰로오스의 물리화학적 특성 (Pretreatment of Cane Molasses for Production of Bacterial Cellulose and Its Physico-Chemical Properties)

  • 정호일;정진하;전영동;이나리;박기현;김용균;박근태;손홍주
    • 생명과학회지
    • /
    • 제19권10호
    • /
    • pp.1432-1437
    • /
    • 2009
  • BC 합성능이 우수하며, 진탕배양에서도 BC를 생산할 수 있는 능력이 있음이 확인된 Aectobacter sp. V6로부터 BC 생산을 위한 당밀 전처리 조건을 검토하였으며, 생산된 BC의 물리화학적 특성을 검토하였다. 당밀을 배지성분으로 사용하기 위해 전처리를 실시한 결과, 1%의 TP가 BC 생산에 가장 효율적이었다. 전처리한 당밀배지를 이용하여 정치 및 진탕배양에서 생산된 BC의 물리화학적 특성을 조사한 결과, 모든 BC는 유화능이 있었으나 유화 안정능은 낮았다. 또한 모든 BC에서 높은 수분 보유능이 나타났으며, 특히 정치배양에서 생산된 BC는 $\alpha$-cellulose보다 14배 이상 높았다. BC의 점도는 모두 $\alpha$-cellulose보다 높았으며, 점도계 회전속도의 증가에 따라 급격히 감소하였다. FT-IR을 통한 조성 분석에서 BC는 식물성 셀룰로 오스와 차이가 없었으며, XRD를 통한 결정성 분석에서는 모든 BC가 결정성을 나타내었다. BC의 미세구조를 조사한 결과, 모든 BC가 미세망상구조로 이루어져 있었는데, 이로 인해 BC는 식물성 셀룰로오스와는 달리 독특한 물성을 가지는 것으로 판단되었다. 또한 정치배양에서 생산된 BC는 진탕배양에서 생산된 것보다 셀룰로오스 미세섬유가 조밀하게 얽혀있음을 알 수 있었다.

반도성 고분자 현탁액의 전기유변학적 거동과 계면편극화 (Electrorheological Behaviors and Interfacial Polarization of Semi-conductive Polymer-based Suspensions)

  • B.D Chin;Lee, Y.S.;Lee, H.J.;S.M. Yang;Park, O.O.
    • 유변학
    • /
    • 제10권4호
    • /
    • pp.195-201
    • /
    • 1998
  • 반도성 고분자인 폴리아닐린과 폴리파라페닐렌을 이용한 전기유변유체의 유변학적 및 전기적 특성을 고찰하였다. 이들 반도성 고분자 현탁액은 분산입자와 현탁매질의 전기전도도 차이로 인하여 직류 전기장 하에서 큰 점도 증가를 보였다. 전기유변효과로 기인한 동적 항복응력은 낮은 전기장 하에서는 전기장 제곱에의 의존성을 보였으나 높은 전기장 하에서는 전기장의 1승에 비례하는 거동을 나타내었다. 항복 응력은 분산입자의 전기전도도가 증가함에 따라 최대값을 보이다가 다시 감소하는 현상을 나타내었다. 직류 전기장 하에서의 이러한 항복 응력 거동은 전도도 효과에 의한 맥스웰-와그너 계면편극화로 설명되는 현탁액의 유전 특성과 관련됨을 발견하였다. 계면 편극화 효과가 전기유변현상에 미치는 영향에 대한 더 깊은 이해와 분산액의 침강 안정성 개선을 위하여, 전기유변 효과의 조절이 가능할 뿐 아니라 현탁액의 콜로이드 안정성을 향상시킬 수 있는 여러 가지의 계면 활성제의 영향을 피력하였다.

  • PDF