Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.10.1432

Pretreatment of Cane Molasses for Production of Bacterial Cellulose and Its Physico-Chemical Properties  

Jung, Ho-Il (Department of Life Science & Environmental Biochemistry, Pusan National University)
Jeong, Jin-Ha (Department of Life Science & Environmental Biochemistry, Pusan National University)
Jeon, Young-Dong (Department of Life Science & Environmental Biochemistry, Pusan National University)
Lee, Na-Ri (Department of Life Science & Environmental Biochemistry, Pusan National University)
Park, Ki-Hyun (Department of Life Science & Environmental Biochemistry, Pusan National University)
Kim, Yong-Gyun (Department of Life Science & Environmental Biochemistry, Pusan National University)
Park, Geun-Tae (Research & University-Industry Cooperation, Pusan National University)
Son, Hong-Joo (Department of Life Science & Environmental Biochemistry, Pusan National University)
Publication Information
Journal of Life Science / v.19, no.10, 2009 , pp. 1432-1437 More about this Journal
Abstract
The aim of this study is to investigate cane molasses pretreatments for the production of cellulose by Acetobacter sp. V6, which has excellent bacterial cellulose (BC) producing capacity in the shaking culture. Among pretreatments of cane molasses, 1% (w/v) tricalcium phosphate (TP) treatment was more efficient in BC production. The physico-chemical properties of BCs that were produced in static and shaking cultures were also investigated. Although BC had an emulsifying ability, its emulsion stability was low. Water holding capacity (WHC) of BC was high; the WHC of BC produced in static culture was 14 times higher than that of $\alpha$-cellulose. In addition, the viscosity of BC was higher than that of $\alpha$-cellulose. Composition analysis by FT-IR showed no difference in composition between BC and plant cellulose. In the crystallinity analysis by XRD, all BC samples showed crystallinity. All BC samples showed reticulated structures consisting of ultrafine cellulose fibriles. Microfibriles of cellulose from static culture were especially more compact than those of cellulose from shaking culture.
Keywords
Acetobacter sp.; bacterial cellulose; molasses; pretreatment;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Son, H J., O. M. Lee, Y. G. Kim, and S. J. Lee. 2000. Isolation identification of cellulose producing bacteria. Kor. J. Appl. Microbiol. Biotechnol. 28, 134-138
2 Son, H J., O. M. Lee, Y. G. Kim, Y. K. Park, and S. J. Lee. 2000. Characteristics of cellulose production by Acetobacter sp. A9 in static culture. Kor. J. Biotechnol. Bioeng. 15, 573-577
3 Sutherland, T. W. 1998. Novel and estabilished applications of microbial polysaccharides. TIBTECH 16, 41-46   DOI   ScienceOn
4 U.S. Sugar Corp. 2003. Typical composition of U. S. sugar's heavy mill run cane molasses
5 Yamanaka, S., K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, Y Nishi, and M. Uryu. 1989. The structure and mechanical properties of sheets prepared from bacterial cellulose. J. Mat. Sci. 24, 3141-3145   DOI
6 Yoshino, T., T. Asakura, and K. Toda. 1996. Cellulose production by Acetobacter pasteurianus on silicone membrane. J. Ferment. Bioeng. 81, 32-36   DOI   ScienceOn
7 Kotzamanidis, C. H, T. Roukas, and G. Skaracis. 2002. Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World J. Microbiol. Biotech. 18, 441-448   DOI   ScienceOn
8 Lee, S. Y, J. R. Jeon, and Y K. Yang. 2005. Characteristics of the physical function of biocellulose from Acetobacter xylinum. Food Eng. Prog. 9, 182-191
9 Okiyama, A, H. Shirae, H. Kano, and S. Yamanaka. 1992. Bacterial cellulose 1. Two-stage fermentation process for cellulose production by Acetobacter aceti. Food Hydrocolloids 6, 471-477   DOI   ScienceOn
10 Ougiya, H., K. Watanabe, Y. Morinaga, and F. Yoshinaga. 1997. Emulsion-stabilizing effect of bacterial cellulose. Biosci. Biotech. Biochem. 61, 1541-1545   DOI   ScienceOn
11 Paek, H. S., J. S. Park, S. M. Jo, W. S. Lee, and K. J. Kim. 1993. The effects of preparation conditions of celluose/NMethylmorpholine-N-Oxide solutions on physical properties of fibers. J. Korean Fiber Soc. 30, 569
12 Ross, P., R. Mayer, and M. Benziman. 1991. Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55, 35-58
13 Roukas, T. 1998. Pretreatment of beet molasses to increase pullulan production. Process Biochem. 33, 805-810   DOI   ScienceOn
14 Delmer, D. P. and Y Amor. 1995. Cellulose biosynthesis. Plant Cell 7, 987-1000   DOI   ScienceOn
15 Sakran, M. A 1996. Mechanism of cellulose polymer reactions with some cation-exchanged montmorillonite catalysts. J. Radioanal. Nucl. Chem. 213, 87-98   DOI   ScienceOn
16 Schneider, A. L. S., R. Merkle, M. F. Carvalho-Jonas, R. Jonas, and S. A. Furlan. 2001. Oxygen transfer on $\beta$-D-galactosidase production by Kluyveromyces marxianus using sugar cane molasses as carbon source. Biotechnol. Lett. 23, 547-550   DOI   ScienceOn
17 Bae, S. O. and M. Shoda. 2005. Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermenter. Appl. Microbiol. Biotechnol. 67, 45-51   DOI   ScienceOn
18 Dubois, M., K. A Gilles, J. K. Hamilton, P. A Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350-356   DOI
19 Dudman, W. F. 1959. Cellulose production by Acetobacter acetigenum and other Acetobacter spp. J. Gen. Microbiol. 21, 312-326   DOI
20 Ebihara, K. and S. Kiriyama. 1990. Physico-chemical property and physiological function of dietary fiber. Nippon Shokuhin Kogyo Gakkaishi 37, 916-933   DOI
21 Embuscado, M. E., J. N. BeMiller, and J. S. Marks. 1996. Isolation and partial characterization of cellulose produced by Acetobacter xylinum. Food Hydrocolloids 10, 75-82   DOI   ScienceOn
22 Focher, B., M. T. Palma, M. Canetti, G. Torri, C. Cosentino, and G. Gastaldi. 2001. Structural differences between non-wood plant celluloses: evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Industrial Crops and Products 13, 193-208   DOI   ScienceOn
23 Bae, S. O. and M. Shoda. 2004. Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol. Prog. 20, 1366-1371   DOI   ScienceOn
24 Kang, J. Hand S. C. Park. 2007. Production and characteristics of cellulose from Saprolegnia ferax. J. of Korea TAPPI 39, 77-83
25 Keshk, S. M. AS., T. M. A Razek, and K. Sameshima. 2006. Bacterial cellulose production from beet molasses. African Journal of Biotechnol. 5, 1519-1523
26 Klemm, D., D. Schumann, U. Udhard, and S. Marsch. 2001. Bacterial synthesized cellulose - Artficial blood vessels for microsurgery. Prog. Polym. Sci. 26, 1561-1603   DOI   ScienceOn
27 American Association of Cereal Chemists (AACC). 1981. Method for water hydration capacity of plant protein material. Cereal Foods World 26, 291-293