• Title/Summary/Keyword: static uses

Search Result 303, Processing Time 0.025 seconds

Evaluation of Urban Riverine Area Usage -Gapcheon and Yudungcheon in Daejeon City - (도시하천의 공간이용 평가 -갑천과 유등천을 중심으로-)

  • Jang, Chang-Lae;Kim, Jeongkon;Lee, Gwangman
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.4
    • /
    • pp.1-12
    • /
    • 2006
  • The usages of urban riverine areas for the Gapchoen and Yudungcheon in Daejoen City were evaluated by analyzing riverbed characteristics and water quality and by surveying the status of the floodplain usage including questionnaires of people visiting the rivers. Both rivers appear to be stable with insignificant bed changes as the riverbeds are dominated by gravels. Water qualities of both rivers have been improved significantly over the past decade although there are quite large seasonal fluctuations, which is common in most rivers in Korea. The results of floodplain usage analyses show that Gapcheon is dominated with static uses (>70%) such as promenades and resting facilities, while Yudungcheon by dynamic uses (>44%) such as sports facilities. Overall, both rivers require better plans for riverine area usage management considering a balance between the dynamic uses and the static uses such as natural observation places for education and habitats for birds and fish in the rivers. The questionnaire survey results indicate that overall the present status of both rivers are satisfactory and that water quality improvement is one of the key factors to enhance the value of the riverine areas. Future river restoration should be conducted by taking into account the characteristics of urban rivers in harmony with surrounding natural sceneries.

Structural Optimization of a Joined-Wing Using Equivalent Static Loads (등가정하중을 이용한 접합날개의 구조최적설계)

  • Lee Hyun-Ah;Kim Yong-Il;Park Gyung-Jin;Kang Byung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.585-594
    • /
    • 2006
  • The joined-wing is a new concept of the airplane wing. The fore-wing and the aft-wing are joined together in a joined-wing. The range and loiter are longer than those of a conventional wing. The joined-wing can lead to increased aerodynamic performance and reduction of the structural weight. In this research, dynamic response optimization of a joined-wing is carried out by using equivalent static loads. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. The gust loads are considered as critical loading conditions and they dynamically act on the structure of the aircraft. It is difficult to identify the exact gust load profile. Therefore, the dynamic loads are assumed to be (1-cosine) function. Static response optimization is performed for the two cases. One uses the same design variable definition as dynamic response optimization. The other uses the thicknesses of all elements as design variables. The results are compared.

Static Stiffness Tuning Method of Rotational Joint of Machining Center (머시닝센터 회전 결합부의 정강성 Tuning 기법)

  • Kim, Yang-Jin;Lee, Chan-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.797-803
    • /
    • 2010
  • A method has been developed to tune the static stiffness at a rotation joint considering the whole machine tool system by interactive use of finite element method and experiment. This paper describes the procedure of this method and shows the results. The method uses the static experiment on measurement model which is set-up so that the effects of uncertain factors can be excluded. For FEM simulation, the rotation joint model is simplified using only spindle, bearing and spring. At the rotation joint, the damping coefficient is ignored, The spindle and bearing is connected by only spring. By static experiment, 500 N is forced to the front and behind portion of spindle and the deformation is measured by capacitive sensor. The deformation by FEM simulation is extracted with changing the static stiffness from the initial static stiffness considering only rotation joint. The tuning static stiffness is obtained by exploring the static stiffness directly trusting the deformation from the static experiment. Finally, the general tuning method of the static stiffness of machine tool joint is proposed using the force stream and the modal analysis of machine tool.

Structural Optimization under Equivalent Static Loads Transformed from Dynamic Loads Based on Displacement (변위에 기초한 동하중에서 변환된 등가정하중하에서의 구조최적설계)

  • Gang, Byeong-Su;Choe, U-Seok;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1949-1957
    • /
    • 2000
  • All the loads in the real world act dynamically on structures. Since dynamic loads are extremely difficult to handle in analysis and design, static loads are utilized with dynamic factors. The dyna mic factors are generally determined based on experiences. Therefore, the static loads can cause problems in precise analysis and design. An analytical method based on modal analysis has been proposed for the transformation of dynamic loads into equivalent static load sets. Equivalent static load sets are calculated to generate an identical displacement field in a structure with that from dynamic loads at a certain time. The process is derived and evaluated mathematically. The method is verified through numerical tests. Various characteristics are identified to match the dynamic and the static behaviors. For example, the opposite direction of a dynamic load should be considered due to the vibration response. A dynamic bad is transformed to multiple equivalent static loads according to the number of the critical times. The places of the equivalent static load can be different from those of the dynamic load. An optimization method is defined to use the equivalent static loads. The developed optimization process has the same effect as the dynamic optimization which uses the dynamic loads directly. Standard examples are solved and the results are discussed

Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (I) (선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (I) - 알고리듬 -)

  • Park Ki-Jong;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1051-1060
    • /
    • 2005
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. The conventional method spends most of the total design time on nonlinear analysis. The NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The proposed algorithm is applied to a simple mathematical problem to verify the convergence and the optimality.

Nonlinear Dynamic Response Structural Optimization of an Automobile Frontal Structure Using Equivalent Static Loads (등가정하중법을 이용한 차량 전면 구조물의 비선형 동적 반응 구조최적설계)

  • Yoon, Shic;Jeong, Seong-Beom;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1156-1161
    • /
    • 2008
  • Nonlinear dynamic analysis is generally used in automobile crash analysis and structural optimization considering crashworthiness uses the results of nonlinear dynamic analysis. Automobile crash optimization has high nonlinearity and difficulty in calculating sensitivity. Recently the equivalent static load (ESL) method has been proposed in order to overcome these difficulties. The ESL is the static load set generating the same displacement field as the nonlinear dynamic displacement field at each time step in dynamic analysis. From various researches regarding the ESL method, it has been proved that the ESL method is fairly useful. The ESL method can mathematically optimize a crash optimization problem through nonlinear analysis and well developed static optimization. The ESL is applied to nonlinear dynamic structural optimization of the automobile frontal impact problem. An automobile bumper is optimized. The mass of the structure is minimized while some constraints are satisfied.

  • PDF

Crash Optimization of an Automobile Frontal Structure Using Equivalent Static Loads (등가정하중을 이용한 차량 전면구조물 충돌최적설계)

  • Lee, Youngmyung;Ahn, Jin-Seok;Park, Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.583-590
    • /
    • 2015
  • Automobile crash optimization is nonlinear dynamic response structural optimization that uses highly nonlinear crash analysis in the time domain. The equivalent static loads (ESLs) method has been proposed to solve such problems. The ESLs are the static load sets generating the same displacement field as that of nonlinear dynamic analysis. Linear static response structural optimization is employed with the ESLs as multiple loading conditions. Nonlinear dynamic analysis and linear static structural optimization are repeated until the convergence criteria are satisfied. Nonlinear dynamic crash analysis for frontal analysis may not have boundary conditions, but boundary conditions are required in linear static response optimization. This study proposes a method to use the inertia relief method to overcome the mismatch. An optimization problem is formulated for the design of an automobile frontal structure and solved by the proposed method.

Determinants of Micro-, Small- and Medium-Sized Enterprise Loans by Commercial Banks in Indonesia

  • YUDARUDDIN, Rizky
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.19-30
    • /
    • 2020
  • This paper investigates, in a single equation framework, the effect of bank-specific and macroeconomic determinants on micro-, small- and medium-sized loans by commercial banks in Indonesia. This study uses a sample of 790 observations from 79 commercial banks in Indonesia over the years 2006-2015. This study uses two estimation methods for our panel regressions: static and dynamic generalized method of moments (GMM) panel estimator. In static relationships, the literature usually uses the least square methods on fixed effects (FE) or random effects (RE). I found evidence that all banks, bank profitability and size are positively and significantly related to micro-, small- and medium-sized loans, while the coefficients of liquidity are significantly positive in all specifications, except government banks which is significantly negative. The relationship between risk and credit growth is negative for non-government banks. All estimated equations show that the effect of the capital variable on lending banks to MSMEs is not important in government banks and non-government banks. Finally, macroeconomic variables, such as inflation and gross domestic product, clearly affect the lending of the banking sector particularly non-state banks. The findings have several policy implications to Indonesia government, regulatory authority and bank managers in order to improve bank profitability through bank lending.

Advanced Static Over-modulation Scheme using Offset Voltages Injection for Simple Implementation and Less Harmonics

  • Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.138-145
    • /
    • 2015
  • In this paper, a novel static overmodulation scheme (OVM) for space-vector PWM (SVPWM) is proposed. The proposed static OVM scheme uses the concept of adding offset voltages in linear region as well as overmodulation region to fully utilize DC-link voltage. By employing zero sequence voltage injection, the proposed scheme reduces procedures for achieving SVPWM such as complicated gating time calculation. In addition, this paper proposes a stepwise discontinuous angle movement in high modulation region in order to reduce Total Harmonic Distortion (THD). The validity of the proposed scheme is verified through theoretical analysis and experimental results.

An Optimization Algorithm to Compute Pre-Loads of the Given Static Equilibrium State in Train Dynamics (열차동역학에서 주어진 정적평형상태의 초기하중을 계산하기 위한 최적화 알고리즘)

  • 김종인;박정훈;유홍희;황요하
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.3
    • /
    • pp.9-17
    • /
    • 1999
  • This paper presents a new algorithm to determine the pre-loads that sustain the static equilibrium state in a given position. The algorithm which uses a partial velocity matrix leads to an unconstrained optimization problem to compute the pre-loads of the suspensions. To demonstrate the validity of the proposed algorithm, the static analysis results that employ the pre-loads of three examples are presented using a reliable commercial program. Results of the analysis confirm the validity of the proposed algorithm.

  • PDF