• Title/Summary/Keyword: static strain

Search Result 805, Processing Time 0.025 seconds

High Temperature Creep Life Prediction of Friction Welded Joints by Initial Strain Method and the AE Evaluation (ISM에 의한 마찰용접재(SUH3-SUH35)의 고온크리프 수명예측에 관한 연구)

  • 오세규;이원석
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.40-48
    • /
    • 1997
  • There are many research results as individual uni-axial tension creep test of heat-resisting materials. However, there are very few about the study on the high temperature creep test for the Initial Strain Method, and especially any study on it about the friction welded joints of SUH3 to SUH35. One of the important concerns is a reliable method of evaluating static creep properties. No reliable method seems available at present to evaluate or predict static creep properties. So, the reliable method to evaluate and predict them by the ISM and AE techniques was made.

  • PDF

Characteristics of Undrained Shear Behavior for Nak-Dong River Sand Due to Aging Effect (Aging 효과에 따른 낙동강 모래의 비배수 전단거동 특성)

  • Kim, Young-Su;Kim, Dae-Man
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.916-923
    • /
    • 2005
  • In this study, to observe aging effect of undrained shear behavior for Nak-Dong River sand, undrained static and cyclic triaxial tests were performed with changing relative density ($D_r$), consolidation stress ratio($K_c$) and consolidation time. As a result of the test, the modulus of elasticity to all samples estimated within elastic zone by the micro strain of about 0.05% in case of static shear behavior increased with the lapse of consolidation time significantly, so aging effect was shown largely. Also strength of phase transformation point(S_{PT}$) and strength of critical stress ratio point($S_{CSR}$) increased with the lapse of consolidation time. Undrained cyclic shear strength($R_f$) obtained from the failure strain 5% increased in proportion to relative density($D_r$) and initial static shear stress($q_{st}$), $R_f$ of consolidated sample for 1,000 minutes increased about 10.6% compared to that for 10 minutes at the loose sand, and $R_f$ increased about 7.0% at the medium sand. In situ application range of $R_f$ to the magnitude of earthquake for Nak-Dong River sand was proposed by using a increasing rate of $R_f$ as being aging effect shown from this test result.

  • PDF

Research on static and dynamic behaviors of PC track beam for straddle monorail transit system

  • Yang, Yongqing;Yang, Deng;Gou, Hongye;Bao, Yi
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.437-452
    • /
    • 2019
  • In this study, in-situ static and dynamic tests of four pre-stressed concrete (PC) track beams with different span lengths and curvatures in a straddle monorail transit system were reported. In the static load tests, the strain and deflection at critical sections of the PC track beams were measured to determine the load bearing capacity and stiffness. The dynamic responses of strain, deflection, acceleration, and displacement at key positions of the PC track beams were measured under different train speeds and train loads to systematically study the dynamic behaviors of the PC track beams. A three-dimensional finite element model of the track beam-vehicle coupled vibration system was established to help understand the dynamic behavior of the system, and the model was verified using the test results. The research results show that the curvature, span length, train speed, and train loads have significant influence on the dynamic responses of the PC track beams. The dynamic performance of the PC track beams in the curve section is susceptible to dynamic loads. Appropriate train loads can effectively reduce the impact of the train on the PC track beam. The PC track beams allow good riding comfort.

A Experimental Study on the Static Strengthen Effect of Bridge Deck Strengthened with GFS (GFS로 성능향상된 교량 바닥판의 정적 보강효과)

  • 심종성;오홍섭;류승무;박성재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.739-744
    • /
    • 2001
  • The concrete bridge deck is quitely required to be replaced or strengthened due to decreasing load carrying capacity. In this study, to increase load capacity of the reinforced concrete slab, bridge deck is reinforced with the glass fiber sheets. they are examined on the strengthen effect and the static behavior, This paper considers relation of load-displacement and strain-distance. The static behavior of the slab strengthened is represented to maximum load. Owing to that, they are examined on increasing load carrying capacity of reinforced bridge deck and strengthen effect about on the crack.

  • PDF

The Study of Static and Dynamic Characteristics for a Isolation Rubber Mount using the Complex Stiffness (고무의 복합강성을 이용한 방진 마운트의 정적ㆍ동적 특성에 관한 연구)

  • 권오병;김종연;김영구;한문성;고철수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.927-932
    • /
    • 2001
  • Rubber has high damping and can be formed as various shape according to specific purpose. So, Rubber has widely used as isolation mounts. However, there are still a lot of difficulties in understanding of static and dynamic characteristics of compressed and shear rubber mounts. In this paper, Static characteristics of the rubber isolation mount are observed by the analytical method and FEM. Also dynamic characteristics of rubber mount under compression and shear strain are investigated.

  • PDF

Strain interaction of steel stirrup and EB-FRP web strip in shear-strengthened semi-deep concrete beams

  • Javad Mokari Rahmdel;Erfan Shafei
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.383-393
    • /
    • 2023
  • Conventional reinforced concrete design codes assume ideal strain evolution in semi-deep beams with externally bonded fiber-reinforced polymer (EB-FRP) web strips. However, there is a strain interaction between internal stirrups and web strips, leading to a notable difference between code-based and experimental shear strengths. Current study provides an experiment-verified detailed numerical framework to assess the potential strain interaction under quasi-static monotonic load. Based on the observations, steel stirrups are effective only for low EB-FRP amounts and the over-strengthening of semi-deep beams prevents the stirrups from yielding, reducing its shear strength contribution. A notable difference is detected between the code-based and the study-based EB-FRP strain values, which is a function of the normalized FRP stress parameter. Semi-analytical relations are proposed to estimate the effective strain and stress of the components considering the potential strain interaction. For the sake of simplification, a linearized correction factor is proposed for the EB-FRP web strip strain, assuming its restraining effect as constant for all steel stirrup amounts.

A Study on Dynamic Material Properties of Functional High Explosive Formulation Simulant Subjected to Dynamic Loading (동적하중을 받는 기능성 고폭화약조성 시뮬런트 재료물성 연구)

  • Park, Jungsu;Yeom, Kee Sun;Park, Chunghee;Jeong, Sehwan;Lee, Keundeuck;Huh, Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.857-866
    • /
    • 2013
  • This paper is concerned with the material properties of functional high explosive(FHX) simulant at various strain rates ranging from $10^{-4}/sec$ to $10^1/sec$. Material properties of FHX at high strain rates are important in prediction of deformation modes of FHX in a warhead which undergoes dynamic loading. Inert FHX stimulant which has analogous mechanical properties with FHX was utilized for material tests due to safety issues. Uniaxial tensile tests at quasi-static strain rates ranging from $10^{-4}/sec$ to $10^{-2}/sec$ and intermediate strain rates ranging from $10^{-1}/sec$ to $10^1/sec$ were conducted with JANNAF specimen using a tensile testing machine, INTRON 5583, and developed high speed material testing machine, respectively. Uniaxial compressive tests at quasi-static strain rates and intermediate strain rates were conducted with cylindrical specimen using a dynamic materials testing machine, INSTRON 8801. And cyclic compressive loading tests were performed with various strain rates and strains. Deformation behaviors were investigated using captured images obtained from a high-speed camera.

Prediction of the Static Deflection Profiles on Suspension Bridge by Using FBG Strain Sensors (FBG 변형률센서를 이용한 현수교의 정적 처짐형상 추정)

  • Cho, Nam-So;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.699-707
    • /
    • 2008
  • For most structural evaluation of bridge integrity, it is very important to measure the geometric profile, which is a major factor representing the global behavior of civil structures, especially bridges. In the past, because of the lack of appropriate methods to measure the deflection profile of bridges on site, the measurement of deflection has been restricted to just a few discrete points along the bridge, and the measuring points have been limited to the locations installed with displacement transducers. Thus, some methods for predicting the static deflection by using fiber optic strain sensors has been applied to simply supported bridges. In this study, a method of estimating the static deflection profile by using strains measured from suspension bridges was proposed. Based on the classical deflection theory of suspension bridges, an equation of deflection profile was derived and applied to obtain the actual deflection profile on Namhae suspension bridge. Field load tests were carried out to measure strains from FBG strain sensors attached inside the stiffening girder of the bridge. The predicted deflection profiles were compared with both precise surveying data and numerical analysis results. Thus, it is found that the equation of predicting the deflection profiles proposed in this study could be applicable to suspension bridges and the FBG strain sensors could be reliable on acquiring the strain data from bridges on site.

A viscoelastic constitutive model of rubber under small oscillatory loads superimposed on large static deformation (정적 대변형에 중첩된 미소 동적 하중을 견디는 고무재료의 점탄성 구성방정식에 관한 연구)

  • Kim, Bong-Kyu;Youn, Sung-Kie
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.280-285
    • /
    • 2000
  • A viscoelastic constitutive equation of rubber that is under small oscillatory load superimposed on large static deformation is proposed. The proposed model is derived through linearization of Simo's viscoelastic constitutive model and reference configuration transformation. The proposed constitutive equation is extended to a generalized viscoelastic constitutive equation that includes widely used Mormin's model as a special case using objective stress increment. Static deformation correction factor is introduced to consider the influence of Pre-strain on the relaxation function. The proposed constitutive model is tested fer dynamic behavior of rubber specimens with different carbon black contents. It is concluded from the test that the viscoelastic constitutive equation for filled rubber must include the influence of the static deformation on the time effects. The suggested constitutive equation with static deformation correction factor shows good agreement with test values.

  • PDF

Comparison of dynamic and static methods in the measurement of the initial stiffness of soil (동적 및 정적 실험 방법으로 평가한 지반의 초기 강성 비교)

  • Choo, Jin-Hyun;Jung, Young-Hoon;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.940-951
    • /
    • 2009
  • A comparative study on dynamic and static measurement of initial stiffness was conducted. Because soil stiffness decreases even at very small strains, the initial stiffness has been measured by dynamic tests using shear wave velocity measurement. On the other hand, due to the advance of local strain measurement, the triaxial testing device is capable of measuring the static initial stiffness. It has been known that initial stiffness measured by static triaxial tests is generally lower than that measured by dynamic tests possibly due to the limitation of static measurement of displacement at very small strains. This study presents experimental results indicating that the elastic shear moduli could be the same both in dynamic and static measurements owing to the soil anisotropy induced by anisotropic stresses.

  • PDF