• Title/Summary/Keyword: static software analysis

Search Result 346, Processing Time 0.028 seconds

Seismic behavior of concrete gravity dams

  • Varughese, Jiji Anna;Nikithan, Sreelakshmi
    • Advances in Computational Design
    • /
    • v.1 no.2
    • /
    • pp.195-206
    • /
    • 2016
  • Dams play a vital role in the development and sustainment in a country. Failure of dams leads to the catastrophic event with sudden release of water and is of great concern. Hence earthquake-resistant design of dams is of prime importance. The present study involves static, modal and transient analyses of dam-reservoir-foundation system using finite element software ANSYS 15. The dam and the foundation are modeled with 2D plane strain element "PLANE 42" and the reservoir by fluid acoustic element "FLUID 29" with proper consideration of fluid-structure interaction. An expression for the fundamental period of concrete dams is developed based on modal analysis. Seismic response of gravity dams subjected to earthquake acceleration is evaluated in terms of peak displacement and stress.

A Static Analysis Test Procedure Model of Improving Software Safeness (소프트웨어 안전성 개선을 위한 정적분석 시험 절차 모델)

  • Yoo, Hyun-Sang;Kim, Hyong-Shik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.315-317
    • /
    • 2016
  • 소프트웨어의 활용 영역이 점차 넓어지면서 프로그램 코드에 대한 안전성이 훨씬 더 중요해지고 있다. 이에 따라 소프트웨어 품질을 높이기 위한 방법들이 다양하게 제시되어 왔고, 다양한 도구들을 활용한 소프트웨어 품질분석에 대한 관심도 증가하였다. 본 논문에서는 이러한 분석 도구들에 대하여 설명하고 소프트웨어 안전성 분석절차를 제시한다. 분석절차는 시험도구 준비, 시험 수행, 시험결과 검증, 시험결과 산출 단계로 구성되며, 안전성 검사에 효과적임을 확인할 수 있었다.

Seismic bearing capacity of shallow footings on cement-improved soils

  • Kholdebarin, Alireza;Massumi, Ali;Davoodi, Mohammad
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.179-190
    • /
    • 2016
  • A single rigid footing constructed on sandy-clay soil was modeled and analyzed using FLAC software under static conditions and vertical ground motion using three accelerograms. Dynamic analysis was repeated by changing the elastic and plastic parameters of the soil by changing the percentage of cement grouting (2, 4 and 6 %). The load-settlement curves were plotted and their bearing capacities compared under different conditions. Vertical settlement contours and time histories of settlement were plotted and analyzed for treated and untreated soil for the different percentages of cement. The results demonstrate that adding 2, 4 and 6 % of cement under specific conditions increased the dynamic bearing capacity 2.7, 4.2 and 7.0 times, respectively.

The significance of removing shear walls in existing low-rise RC frame buildings - Sustainable approach

  • Keihani, Reza;Bahadori-Jahromi, Ali;Goodchild, Charles
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.563-576
    • /
    • 2019
  • According to The Concrete Centre, in the UK shear walls have become an inseparable part of almost every reinforced concrete frame building. Recently, the construction industry has questioned the need for shear walls in low to mid-rise RC frame buildings. This study tried to address the issue in two stages: The first stage, the feasibility of removing shear walls in an existing design for a residential building where ETABS and CONCEPT software were used to investigate the structural performance and cost-effectiveness respectively. The second stage, the same structure was examined in various locations in the UK to investigate regional effects. This study demonstrated that the building without shear wall could provide adequate serviceability and strength within the safe range defined by Eurocodes. As a result, construction time, overall cost and required concrete volume are reduced which in turn enhance the sustainability of concrete construction.

Stability Evaluation during Transportation of Offshore Wind Turbine by Barge (바지선을 이용한 해상풍력발전기 운반에 따른 안정성 평가)

  • Seok, Jun;Back, Young-Soo;Park, Jong-Chun;Kim, Sung-Yong;Cha, Tae-Hyung;Yang, Young-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.196-203
    • /
    • 2017
  • In general, the installation of offshore wind turbine have been carried out by a jack-up barge or wind turbine installation vessel. In case of using jack-up barge, an additional barge is required to transport offshore wind turbines. During the transportation, barge is affected by environmental conditions such as wave, wind etc. So, it is important to secure the static and dynamic stability of the barge. In this study, fundamental research was performed to evaluate the stability of barge due to use the guide frame. The analysis for static stability of barge was performed under the two loading conditions with or without wave and those results were evaluated according to the Ministry of Oceans and Fisheries rules. Also motion analysis was performed under the ITTC wave spectrum using buoy data and evaluated based on NORDFORSK guideline by using commercial software Maxsurf Motions.

A Study on Prediction Technique for Underwater Electric Field Signature Characteristic using Dipole Modelling Method (다이폴 모델링 기법을 이용한 수중 전기장 신호 특성 예측 기법 연구)

  • Yang, Chang-Seob;Chung, Hyun-Ju;Lee, Jong-Ju;Jeon, Jae-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.221-224
    • /
    • 2008
  • This paper describes the equivalent dipole modeling method utilizing a singular value decomposition technique from analysis data by the FNREMUS Detailled Modeller software based on BEM which can predict the underwater electric field signal due to a galvanic corrosion phenomenon on a naval vessel. The proposed dipole modeling method was successfully verified in good agreement with predicted BEM data at 30 m depths through the comparison of average differences. The proposed dipole modelling method can be effectively used in the prediction and analysis of static electric field signature distributions generated from a naval vessel at any different depths.

A Differential Fixpoint Evaluation Algorithm for Arbitrary Worklist Scheduling (할 일들의 순서 선택이 자유로운 증가분 기반 고정점 계산 알고리즘)

  • Ahn, Joon-Seon
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.8
    • /
    • pp.808-818
    • /
    • 2005
  • We devise a differential fixpoint computation method and develop a new worklist algorithm based on it. Compared with other differential methods, our method can deal with non-distributive systems and adopt any worklist scheduling policy satisfying restrictions imposed by differential evaluation. As a practical application, we present an interpretation framework and implement constant and alias analysis and memory lifetime analysis based on it. Our experiment shows that our method can save computation and worklist scheduling is also important in differential fixpoint evaluations.

A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE (통합된 CAD/CAE 자동화 System을 이용한 구조강도해석 및 설계최적화에 관한 연구)

  • Yoon J.M.;Won J.H.;Kim J.S.;Choi J.H
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.128-137
    • /
    • 2006
  • In this paper, a CAD/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares for a complex model in which the modeling by parametric feature is not easy to apply. Unigraphics is used for CAD modeling, in which the process is automated by using UG/Knowledge Fusion for modeling itself and UG/Open API function for the other functions respectively. Structural analyses are also carried out automatically by ANSYS using the imported parasolid model. The developed system is applied for the PLS(Plasma Lighting System) consisting of more than 20 components, which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The analyses include responses by static, wind and impact loads. As a result of analyses, tilt assembly, which is a link between upper and lower body, is found to be the most critical component bearing higher stresses. Experiment is conducted using MTS to validate the analysis result. Optimization is carried out using the software Visual DOC for the tilt assembly to minimize material volume while maintaining allowable stress level. As a result of optimization, the maximum stress is reduced by 57% from the existing design, though the material volume has increased by 21%.

Connection of PDM System and Web-Based CAE Supporting System for Small and Medium Enterprises (중소기업을 위한 제품정보관리 시스템과 웹기반 CAE 지원 시스템의 연동)

  • Bang, Je-Sung;Lee, Jai-Kyung;Han, Seung-Ho;Park, Seong-Whan;Lee, Tae-Hee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.459-468
    • /
    • 2008
  • A web-based Computer-Aided Engineering (CAE) supporting system is connected with a Product Data Management (PDM) system for Small and Medium Enterprises (SMEs) suffering from the lack of building hardware, software and related experts. An analysis of current business models and worksite requirements provides an improved process model and data to be shared between the PDM system and the CAE supporting system. Since all engineering tasks such as geometric modeling, mesh generation, static stress and modal analysis, and fatigue durability analysis are automated in the CAE supporting system, the user in charge of the CAE have only to configure the concerned values of design variables and result data through the web page. The existing Change Management module of the PDM system is modified for seamless data exchange, i.e. sending the Engineering Change Order (ECO) data to the CAE supporting system and receiving the CAE result data bark. The hi-directional data transfers between the PDM system and the CAE supporting system is made possible by adaptors bused on the Simple Object Access Protocol (SOAP). The current approach will be very helpful for SMEs that only have the PDM system and have no adequate infrastructure for CAE.

Free vibration analysis of non-prismatic beams under variable axial forces

  • Saffari, H.;Mohammadnejad, M.;Bagheripour, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.561-582
    • /
    • 2012
  • Despite popularity of FEM in analysis of static and dynamic structural problems and the routine applicability of FE softwares, analytical methods based on simple mathematical relations is still largely sought by many researchers and practicing engineers around the world. Development of such analytical methods for analysis of free vibration of non-prismatic beams is also of primary concern. In this paper a new and simple method is proposed for determination of vibration frequencies of non-prismatic beams under variable axial forces. The governing differential equation is first obtained and, according to a harmonic vibration, is converted into a single variable equation in terms of location. Through repetitive integrations, integral equation for the weak form of governing equation is derived. The integration constants are determined using the boundary conditions applied to the problem. The mode shape functions are approximated by a power series. Substitution of the power series into the integral equation transforms it into a system of linear algebraic equations. Natural frequencies are determined using a non-trivial solution for system of equations. Presented method is formulated for beams having various end conditions and is extended for determination of the buckling load of non-prismatic beams. The efficiency and convergence rate of the current approach are investigated through comparison of the numerical results obtained to those obtained using available finite element software.