• Title/Summary/Keyword: static rigidity

Search Result 95, Processing Time 0.024 seconds

High-Stiffness Structure Design of 8-Axis Multi-tasking Machine for Automotive Powertrain Shafts (자동차 파워 트레인 샤프트 가공용 8축 복합가공기의 고 강성 구조설계에 관한 연구)

  • Moon, Dong-Ju;Cho, Jun-Hyun;Choi, Yun-Seo;Hwang, In-Hwan;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.78-83
    • /
    • 2016
  • The development of an exclusive 8-axis multi-tasking machine to finish multiple cutting processes by a single piece of power equipment for securing the high-precision machining and high productivity of the series of shafts (a core part of the automotive powertrain that delivers engine power) is needed. The rigidity of the structure must be improved and the weight of the structure must be reduced to develop a multi-tasking machine with high precision and high productivity. In this paper, we perform a static structural analysis of the initial design of the multi-tasking machines and compare the results of the multi-tasking machines improved by the reinforced design and the results of the initial one. According to the results of the structural analysis, the rigidity of the reinforced machine was increased and the overall weight was decreased. Therefore, the productivity was increased.

Determination of True Modulus of Elasticity and Modulus of Rigidity for Domestic Woods with Different Slenderness Ratios Using Nondestructive Tests (서로 다른 세장비에 대한 비파괴실험으로 국산재의 실질탄성계수와 전단탄성계수 결정)

  • Cha, Jae Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.36-42
    • /
    • 2015
  • This study examined true modulus of elasticity (MOE) and modulus of rigidity (G) for domestic woods with different slenderness ratios (L/D) using the static bending and stress wave tests. Bending properties of small clear wood specimen of three domestic wood species were determined at 12% moisture content. The results of this study indicated that both MOR and MOE of domestic woods were affected by the slenderness ratio. As the slenderness ratio increased, MOR and MOE increased. G and true MOE of domestic timber beams were obtained at different slenderness ratios by flexure test and stress wave test. The values reported here can be useful if these species woods are used for structural purposes. However, the reported values are only indicative and do not represent the true average of wood species due to the limited number of specimens tested.

Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads

  • Zhang, Dongdong;Yuan, Jiaxin;Zhao, Qilin;Li, Feng;Gao, Yifeng;Zhu, Ruijie;Zhao, Zhiqin
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.641-657
    • /
    • 2020
  • A unique lightweight string truss deployable bridge assembled by thin-walled fiber reinforced polymer (FRP) and metal profiles was designed for emergency applications. As a new structure, investigations into the static structural performance under the serviceability limit state are desired for examining the structural integrity of the developed bridge when subjected to unsymmetrical loadings characterized by combined torsion and bending. In this study, a full-scale experimental inspection was conducted on a fabricated bridge, and the combined flexural-torsional behavior was examined in terms of displacement and strains. The experimental structure showed favorable strength and rigidity performances to function as deployable bridge under unsymmetrical loading conditions and should be designed in accordance with the stiffness criterion, the same as that under symmetrical loads. In addition, a finite element model (FEM) with a simple modeling process, which considered the multi segments of the FRP members and realistic nodal stiffness of the complex unique hybrid nodal joints, was constructed and compared against experiments, demonstrating good agreement. A FEM-based numerical analysis was thereafter performed to explore the effect of the change in elastic modulus of different FRP elements on the static deformation of the bridge. The results confirmed that the change in elastic modulus of different types of FRP element members caused remarkable differences on the bending and torsional stiffness of the hybrid bridge. The global stiffness of such a unique bridge can be significantly enhanced by redesigning the critical lower string pull bars using designable FRP profiles with high elastic modulus.

Vertical equipment isolation using piezoelectric inertial-type isolation system

  • Lu, Lyan-Ywan;Lin, Ging-Long;Chen, Yi-Siang;Hsiao, Kun-An
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.195-211
    • /
    • 2020
  • Among anti-seismic technologies, base isolation is a very effective means of mitigating damage to structural and nonstructural components, such as equipment. However, most seismic isolation systems are designed for mitigating only horizontal seismic responses because the realization of a vertical isolation system (VIS) is difficult. The difficulty is primarily due to conflicting isolation stiffness demands in the static and dynamic states for a VIS, which requires sufficient rigidity to support the self-weight of the isolated object in the static state, but sufficient flexibility to lengthen the isolation period and uncouple the ground motion in the dynamic state. To overcome this problem, a semi-active VIS, called the piezoelectric inertia-type vertical isolation system (PIVIS), is proposed in this study. PIVIS is composed of a piezoelectric friction damper (PFD) and a leverage mechanism with a counterweight. The counterweight provides an uplifting force in the static state and an extra inertial force in the dynamic state; therefore, the effective vertical stiffness of PIVIS is higher in the static state and lower in the dynamic state. The PFD provides a controllable friction force for PIVIS to further prevent its excessive displacement. For experimental verification, a shaking table test was conducted on a prototype PIVIS controlled by a simple controller. The experimental results well agree with the theoretical results. To further investigate the isolation performance of PIVIS, the seismic responses of PIVIS were simulated numerically by considering 14 vertical ground motions with different characteristics. The responses of PIVIS were compared with those of a traditional VIS and a passive system (PIVIS without control). The numerical results demonstrate that compared with the traditional and passive systems, PIVIS can effectively suppress isolation displacement in all kinds of earthquake with various peak ground accelerations and frequency content while maintaining its isolation efficiency. The proposed system is particularly effective for near-fault earthquakes with long-period components, for which it prevents resonant-like motion.

Studies on The Free Vibrational Properties of Traditional and Replaceable Species for Sounding Board (향판용(響板用) 관행수종(慣行樹種)과 대체가능수종(代替可能樹種)의 자유진동적(自由振動的) 성질(性質)에 관한 연구(硏究))

  • Kang, Wook;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.48-64
    • /
    • 1988
  • This study was carried out to investigate the free vibrational properties of traditional and replaceable species for sounding board, using piezoelectrical accelerometer and signal analyzer. In the study, the frequency equations of free-free beam carrying a concentrated mass in the transverse vibration and of free-mass beam in the longitudinal vibration were used. The results obtained were as follows. 1. Average values of dynamic modulus of rigidity of Korean commercial species measured were as follows. Paulownia tomatosa (Thunb.) Steudel: $5.590\times10^9\;dyne/cm^2$ Tilia amurensis Rupr.: $5.414\times10^9\;dyne/cm^2$ Macckia amurensis Rupr.: $10.044\times10^9\;dyne/cm^2$ Fraxinus mandshurica Rupr.: $8.876\times10^9\;dyne/cm^2$ Ulmus davidiana var.japonica Nakai: $8.677\times10^9\;dyne/cm^2$ Pinus rigida Miller: $6.33\times10^9\;dyne/cm^2$ Fraxinus rhynchophylla Hance: $4.666\times10^9\;dyne/cm^2$ 2. The ratio of dynamic transverse Young's modulus to dynamic modulus of rigidity, $E_T/G_{LT}$, was 24.922 for Fraxinus rhynchophylla Hance, which was the highest, 7.317 for Paulownia tomentosa (Thunb.) Steudel, which was the lowest among Korean commercial species measured. 3. The value of longitudinal dynamic Young's modulus was about 3.7% and 19.8%, respectively, higher than those of transverse dynamic and static Young's modulus. The value of transverse dynamic Young's modulus was about 15.5% higher than that of static Young's modulus. 4. Predicted value of MOR in terms of correlation coefficient by transverse dynamic Young's modulus was slightly higher than that of static Young's modulus, but no significance was found out. 5. Transverse dynamic Youne's modulus was $(2.002\pm0.288)\times10^{11}\;dyne/cm^2$ for Fraxinus mandshurlca Rupr., which was the highest, $(0.601\pm0.100)\times10^{11}\;dyne/cm^2$ for Paulownia tomentosa (Thunb.) Steudel, which was the lowest among Korean commercial species measured. The sound velocity of sitka spruce was 5,685 m/sec, which was the highest. 6. Internal friction of Paulownia tomentosa (Thunb.) Steudel was shown the lowest value among Korean commercial species, $(8.795\pm1.795)\times10^{-3}$, but was higher than that of sitka spruce, $(7.331\pm0.991)\times10^{-3}$. Internal friction was shown negative correlation with density and dynamic Young's modulus, respectively. 7. K value was affected largely by internal friction and was the highest, $2.225\times10^8$ for Paulownia tomentosa (Thunb.) Steudel and was the lowest, $0.550\times10^8$ for Fraxinus rhynchophylla Hance. K value of Paulownia tomentosa (Thunb.) Steudel was higher than that of sitka spruce and K values of melapi and cottonwood, which have been considered to be replaceable species with sitka spruce in the piano industry, were lower than those of Paulownia tomentosa (Thunb.) Steudel and mill amurensis Rupr.

  • PDF

Static and Dynamic Behavior at Low-Frequency Range of Floating Slab Track Discretely Supported by Rubber Mounts in Real-Scale Laboratory Test (고무 마운트로 이산 지지되는 플로팅 슬래브 궤도의 실모형 실내 실험에서의 정적 및 저주파 대역 동적 거동)

  • Hwang, Sung Ho;Jang, Seung Yup;Kim, Eun;Park, Jin Chul
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.485-497
    • /
    • 2012
  • Recently, with increasing social interests on noise and vibration induced by railway traffic, the application of floating slab track that can efficiently reduce the railway vibration is increasing. In this study, to more accurately understand the dynamic behavior of the floating slab track, a laboratory mock-up test has been performed, and the static and dynamic behaviors at frequency range near the system resonance frequency were explored. Based on the test results, the design of the floating slab track and the structural analysis model used in the design have been verified. The analytic and test results demonstrate that the dominant frequency of the floating slab track occurs at the frequencies between vertical rigid body mode natural frequency and bending mode natural frequency, and the dominant deformation mode is close to the bending mode. This suggests that in the design of the floating slab track, the bending rigidity of the slab and the boundary conditions at slab joints and slab ends should be taken into consideration. Also, the analytic results by the two-dimensional finite element analysis model using Kelvin-Voigt model, such as static and dynamic deflections and force transmissibility, are found in good agreement with the test results, and thus the model used in this study has shown the reliability suitable to be utilized in the design of the floating slab track.

Development and Evaluation of Ultra-precision Desktop NC Turning Machine (초정밀 데스크탑 마이크로 NC 선반 개발 및 성능평가)

  • Ro, Seung-Kook;Park, Jong-Kweon;Park, Hyun-Duk;Kim, Yang-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.747-754
    • /
    • 2013
  • This study introduces a recently designed desktop-sized NC turning system and its components. This machine is designed for the ultra-precise turning of parts with a diameter of 0.5-20 mm with minimum space usage for the machine. This study aims to achieve submicron-level accuracy of movements and good rigidity of the machine for precision machining using the desktop-sized machine. The components such as the main machine structure, air bearing servo spindle, and XZ stage with needle roller guides are designed, and the designed machine is built with a PC-based CNC controller. Its static and dynamic stiffness performances and positioning resolutions are tested. Through machining tests with single-crystal diamond tools, a form error less than $0.8{\mu}m$ and surface roughness (Ra) of $0.03{\mu}m$ for workpieces are obtained.

A Study on Inelastic Behavior of an Asymmetric Tall Building (비대칭 초고층건물의 비탄성거동에 관한 연구)

  • 윤태호;김진구;정명채
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.3
    • /
    • pp.37-44
    • /
    • 1997
  • In this paper, the inelastic behavior of an asymmetric tall building is investigated. The asymmetry in rigidity caused by the structural asymmetry induces torsional as well as lateral deformation. The inelastic analysis of such an asymmetric structure is difficult to carry out with a planar model and thus requires a full three dimensional model. In this paper a 102 story unsymmetric tall building is analized by static push-over procedure and its behavior is investigated. The analysis are performed with and without floor rotation to compare the results. According to the results the static behavior of the model building, as expected, turned out to be dependent heavily an the asymmetry of the plan shapes of the building.

  • PDF

Static and dynamic analysis of cable-suspended concrete beams

  • Kumar, Pankaj;Ganguli, Abhijit;Benipal, Gurmail
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.611-620
    • /
    • 2017
  • A new theory of weightless sagging planer elasto-flexible cables under point loads is developed earlier by the authors and used for predicting the nonlinear dynamic response of cable-suspended linear elastic beams. However, this theory is not valid for nonlinear elastic cracked concrete beams possessing different positive and negative flexural rigidity. In the present paper, the flexural response of simply supported cracked concrete beams suspended from cables by two hangers is presented. Following a procedure established earlier, rate-type constitutive equations and third order nonlinear differential equations of motion for the structures undergoing small elastic displacements are derived. Upon general quasi-static loading, negative nodal forces, moments and support reactions may be introduced in the cable-suspended concrete beams and linear modal frequencies may abruptly change. Subharmonic resonances are predicted under harmonic loading. Uncoupling of the nodal response is proposed as a more general criterion of crossover phenomenon. Significance of the bilinearity ratio of the concrete beam and elasto-configurational displacements of the cable for the structural response is brought out. The relevance of the proposed theory for the analysis and the design of the cable-suspended bridges is critically evaluated.

Experimental and analytical behavior of stiffened angle joints

  • Wang, Peng;Pan, Jianrong;Wang, Zhan;Chen, Shizhe
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.67-78
    • /
    • 2018
  • The application of rib stiffeners is common on steel connections, with regard to the stiffened angle connection, experimental results about the influence of stiffeners under monotonic and cyclic loading are very limited. Consequently, this paper presents the experimental investigation on four types angle connections with or without stiffener under static loading and another four type stiffened angle connections subjected to cyclic loading. The static experimental result showed that the rib stiffener weld in tension zone of the connection greatly enhanced its initial rotational stiffness and flexural strength. While a stiffener was applied to the compression zone of the connection, it had not obvious influences on the initial rotational stiffness, but increased its flexural strength. The moment-rotation curves, skeleton curves, ductility, energy dissipation and rigidity were evaluated under cyclic loading. Stiffened top-and-seat angle connections behaved as semi-rigid and partial strength, and rotation of all stiffened angle connections exceeded 0.04rad. The failure modes between monotonic and cyclic loading test were completely different and indicated certain robustness.