• Title/Summary/Keyword: static parameters

Search Result 1,193, Processing Time 0.029 seconds

An Energy Efficient Cluster Management Method based on Autonomous Learning in a Server Cluster Environment (서버 클러스터 환경에서 자율학습기반의 에너지 효율적인 클러스터 관리 기법)

  • Cho, Sungchul;Kwak, Hukeun;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.6
    • /
    • pp.185-196
    • /
    • 2015
  • Energy aware server clusters aim to reduce power consumption at maximum while keeping QoS(Quality of Service) compared to energy non-aware server clusters. They adjust the power mode of each server in a fixed or variable time interval to let only the minimum number of servers needed to handle current user requests ON. Previous studies on energy aware server cluster put efforts to reduce power consumption further or to keep QoS, but they do not consider energy efficiency well. In this paper, we propose an energy efficient cluster management based on autonomous learning for energy aware server clusters. Using parameters optimized through autonomous learning, our method adjusts server power mode to achieve maximum performance with respect to power consumption. Our method repeats the following procedure for adjusting the power modes of servers. Firstly, according to the current load and traffic pattern, it classifies current workload pattern type in a predetermined way. Secondly, it searches learning table to check whether learning has been performed for the classified workload pattern type in the past. If yes, it uses the already-stored parameters. Otherwise, it performs learning for the classified workload pattern type to find the best parameters in terms of energy efficiency and stores the optimized parameters. Thirdly, it adjusts server power mode with the parameters. We implemented the proposed method and performed experiments with a cluster of 16 servers using three different kinds of load patterns. Experimental results show that the proposed method is better than the existing methods in terms of energy efficiency: the numbers of good response per unit power consumed in the proposed method are 99.8%, 107.5% and 141.8% of those in the existing static method, 102.0%, 107.0% and 106.8% of those in the existing prediction method for banking load pattern, real load pattern, and virtual load pattern, respectively.

The UndrainBd Behavir or of Drilled Shaft Foundations Subjected to Static Inclined Loading (정적 경사하중을 받는 현장타설 말뚝기초의 비배수 거동)

  • ;Kulhawy, Fred H.
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.91-112
    • /
    • 1995
  • Drilled shafts are used increasingly as the foundations for many types of structures. However, very little knowledge of drilled shaft behavior under inclined load is available. In this study, a systematic experimental testing program was conducted to understand the undrained behavior of drilled shaft foundations under inclined loads. A semi-theoretical method of predicting the inclined capacity was developed through a parametric study of the variables such as shaft geometry and load inclination. Test parameters were chosen to be representative of those most frequently used in the electric utility industry. Short, rigid shafts with varying depth/diameter(D/B) ratios were addressed, and loading modes were investigated that includes exial uplift, inclined uplift, and inclined compression loads. Capacities were evaluated using the structural interaction formula and an equation developed from this experimental study. This new equation models the laboratory data well and is applicable for the limites field data.

  • PDF

Rapid Seismic Vulnerability Assessment Method for Generic Structures (일반 구조물에 대한 신속한 지진 취약성 분석 방법)

  • Jeong, Seong-Hoon;Choi, Sung-Mo;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • Analytical probabilistic vulnerability analysis requires extensive computing effort as a result of the randomness in both input motion and response characteristics. In this study, a new methodology whereby a set of vulnerability curves are derived based on the fundamental response quantities of stiffness, strength and ductility is presented. A response database of coefficients describing lognormal vulnerability relationships is constructed by employing aclosed-form solution for a generalized single-degree-of-freedom system. Once the three fundamental quantities of a wide range of structural systems are defined, the vulnerability curves for various limit states can be derived without recourse to further simulation. Examples of application are given and demonstrate the extreme efficiency of the proposed approach in deriving vulnerability relationships.

A Study on the Operational Characteristics of $CO_2$ Laser Excited by 60Hz AC Discharges (상용주파수 교류방전 $CO_2$ 레이저의 동작 특성)

  • Lee, Dong-Hoon;Im, Kyu-Ho;Jeong, Hyun-Ju;Kim, Hee-Je;Jo, Jung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.587-590
    • /
    • 1999
  • In this study, it is the purpose to develope a cheap and compact $CO_2$ laser and to apply 60 Hz AC discharges as a new exciting source. An axial and water cooledtype was adopted as the laser mode. The laser performance characteristics as various parameters, such as gas pressure and discharge current, have been investigated. And the laser output and the efficiency of DC and 60 Hz AC discharge-exciting type have been measured and compared for the different input powers at the static operational pressure. As a result, the case of 60 Hz AC discharge-exciting type, the laser oscillation began at the condition of operational pressure 6 Torr and discharge current 5 mA. A maximum laser output of about 32 W was obtained at an operational pressure of 18 Toorr and a discharge current of 30 mA. In addition, the laser output was saturated from an operational pressure of about 14 Torr and a discharge current of about 20 mA. In this $CO_2$ laser, the laser output of 60 Hz AC discharge-exciting type was slightly higher than that of DC discharge-exciting type. And the laser efficiency was about 10 to 13% for the various operational pressures and the discharge currents.

  • PDF

Parameter Study of Impact Characteristics for a Vacuum Interrupter Considering Dynamic Material Properties (동적 물성치를 고려한 진공 인터럽터 충격특성의 영향인자 분석)

  • Lim, Ji-Ho;Song, Jeong-Han;Huh, Hoon;Park, Woo-Jin;Oh, Il-Seong;Ahn, Gil-Young;Choe, Jong-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.924-931
    • /
    • 2002
  • Vacuum interrupters in order to be used in various switch-gear components such as circuit breakers, distribution switches, contactors, etc. spread the arc uniformly over the surface of the contacts. The electrodes of vacuum interrupters are made of sinter-forged Cu-Cr materials for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain rate is obtained from the split Hopkinson pressure bar test using disc-type specimens. Experimental results from both quasi-static and dynamic compressive tests are Interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the value of five parameters such as the initial velocity of a movable electrode, the added mass of a movable electrode, the wipe spring constant, initial offset of a wipe spring and the virtual fixed spring constant.

Multiscale Wavelet-Galerkin Method in General Two-Dimensional Problems (일반 형상의 2차원 영역에서의 멀티스케일 웨이블렛-갤러킨 기법)

  • Kim, Yun-Yeong;Jang, Gang-Won;Kim, Jae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.939-951
    • /
    • 2002
  • We propose a new multiscale Galerkin method based on interpolation wavelets for two-dimensional Poisson's and plane elasticity problems. The major contributions of the present work are: 1) full multiresolution numerical analysis is carried out, 2) general boundaries are handled by a fictitious domain method without using a penalty term or the Lagrange multiplier, 3) no special integration rule is necessary unlike in the (bi-)orthogonal wavelet-based methods, and 4) an efficient adaptive scheme is easy to incorporate. Several benchmark-type problems are considered to show the effectiveness and the potentials of the present approach. is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain rate is obtained from the split Hopkinson pressure bar test using disc-type specimens. Experimental results from both quasi-static and dynamic compressive tests are Interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the value of five parameters such as the initial velocity of a movable electrode, the added mass of a movable electrode, the wipe spring constant, initial offset of a wipe spring and the virtual fixed spring constant.

Tethers tension force effect in the response of a squared tension leg platform subjected to ocean waves

  • El-gamal, Amr R.;Essa, Ashraf;Ismail, Ayman
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.327-342
    • /
    • 2014
  • The tension leg platform (TLP) is one of the compliant structures which are generally used for deep water oil exploration. With respect to the horizontal degrees of freedom, it behaves like a floating structure moored by vertical tethers which are pretension due to the excess buoyancy of the platform, whereas with respect to the vertical degrees of freedom, it is stiff and resembles a fixed structure and is not allowed to float freely. In the current study, a numerical study for square TLP using modified Morison equation was carried out in the time domain with water particle kinematics using Airy's linear wave theory to investigate the effect of changing the tether tension force on the stiffness matrix of TLP's, the dynamic behavior of TLP's; and on the fatigue stresses in the cables. The effect was investigated for different parameters of the hydrodynamic forces such as wave periods, and wave heights. The numerical study takes into consideration the effect of coupling between various degrees of freedom. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables. Nonlinear equation was solved using Newmark's beta integration method. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e., 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether tension force, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations that is significantly dependent on wave height, and that special attention should be given to tethers fatigue because of their high tensile static and dynamic stress.

A Study on Static Situation Awareness System with the Aid of Optimized Polynomial Radial Basis Function Neural Networks (최적화된 pRBF 뉴럴 네트워크에 의한 정적 상황 인지 시스템에 관한 연구)

  • Oh, Sung-Kwun;Na, Hyun-Suk;Kim, Wook-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2352-2360
    • /
    • 2011
  • In this paper, we introduce a comprehensive design methodology of Radial Basis Function Neural Networks (RBFNN) that is based on mechanism of clustering and optimization algorithm. We can divide some clusters based on similarity of input dataset by using clustering algorithm. As a result, the number of clusters is equal to the number of nodes in the hidden layer. Moreover, the centers of each cluster are used into the centers of each receptive field in the hidden layer. In this study, we have applied Fuzzy-C Means(FCM) and K-Means(KM) clustering algorithm, respectively and compared between them. The weight connections of model are expanded into the type of polynomial functions such as linear and quadratic. In this reason, the output of model consists of relation between input and output. In order to get the optimal structure and better performance, Particle Swarm Optimization(PSO) is used. We can obtain optimized parameters such as both the number of clusters and the polynomial order of weights connection through structural optimization as well as the widths of receptive fields through parametric optimization. To evaluate the performance of proposed model, NXT equipment offered by National Instrument(NI) is exploited. The situation awareness system-related intelligent model was built up by the experimental dataset of distance information measured between object and diverse sensor such as sound sensor, light sensor, and ultrasonic sensor of NXT equipment.

Design of a Nuclear Fuel Spacer Grid Considering Impact and Wear (충격과 마모를 고려한 원자로 핵연료봉 지지격자의 설계)

  • Lee, Hyun-Ah;Kim, Chong-Ki;Song, Kee-Nam;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.999-1008
    • /
    • 2007
  • The spacer grid set is a component in the nuclear fuel assembly. The set supports the fuel rods safely. Therefore, the spacer grid set should have sufficient strength for the external impact forces such as earthquake. The fretting wear occurs between the spring of the fuel rod and the spacer grid due to flow-induced vibration. Conceptual design of the spacer grid set is performed based on the Independence Axiom of axiomatic design. Two functional requirements are defined for the impact load and the fretting wear, and corresponding design parameters are selected. The overall flow of design is defined according to the application of axiomatic design. Design for the impact load is carried out by using nonlinear dynamic analysis to determine the length of the dimple. Topology optimization is carried out to determine a new configuration of the spring. The fretting wear is reduced by shape optimization using the homology theory. The deformation of a structure is called homologous if a given geometrical relationship holds before, during, and after the deformation. In the design to reduce the fretting wear, the deformed shape of the spring should be the same as that of the fuel rod. This condition is transformed to a function and considered as a constraint in the shape optimization process. The fretting wear is expected to be reduced due to the homology constraint. The objective function is minimizing the maximum stress to allow a slight plastic deformation. Shape optimization results are confirmed through nonlinear static analysis.

Comparison of Three Different Slip Meters under Various Contaminated Conditions

  • Kim, Jung-Soo
    • Safety and Health at Work
    • /
    • v.3 no.1
    • /
    • pp.22-30
    • /
    • 2012
  • Objectives: To challenge the problem of slipperiness, various slipmeters have been developed to assess slip hazard. The performance of in-situ slipmeter is, however, still unclear under the various floor conditions. The main objectives of this study were to evaluate the performance of three kinds of slipmeters under real conditions, and to find their dynamic and kinematic characteristics, which were compared with gait test results. Methods: Four common restaurant floor materials were tested under five contaminants. Slipmeters and human gaits were measured by high speed camera and force plate to find and compare their dynamic and kinematic characteristics. Results: The contact pressures and built-up ratio were below those of subjects. The sliding velocity of British Pendulum Tester was above those of subjects, while those of BOT-3000 and English XL were below those of subjects. From the three meters, the English XL showed the highest overall correlation coefficient (r = 0.964) between slip index and $R_a$, while the rest did not show statistical significance with surface roughness parameters ($R_a$, $R_z$). The English XL only showed statistical significance (p < 0.01) between slip index and contaminants. The static coefficient of friction obtained with the BOT-3000 showed good consistency and repeatability (CV < 0.1) as compared to the results for the BPT (CV > 0.2) and English XL (CV < 0.2). Conclusion: It is unclear whether surface roughness can be a reliable and objective indicator of the friction coefficient under real floor conditions, and the viscosity of contaminants can affect the friction coefficient of the same floors. Therefore, to evaluate slipperiness, the performance of the slipmeters needed to improve.