• Title/Summary/Keyword: static optimal shape

Search Result 52, Processing Time 0.024 seconds

A Study on the Structural Integrity of Transportable Heavy-duty Tracking-mount (이동형 대하중 추적 마운트의 구조 건전성에 대한 연구)

  • Kim, Byung In;Son, Young Soo;Park, Cheol Hoon;Lee, Sung Hwi;Ham, Sang Yong;Jo, Sang Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.879-885
    • /
    • 2013
  • Satellites provide a lot of information and essay roles in the areas of defense and space observations. The precise distances to the satellites are measured by emitting and retro-reflecting a laser. For such surveys, satellite laser ranging (SLR) systems have been developed in different forms and for different areas. The structural integrity of the tracking mount is essential for it to be able to track a high-speed satellite precisely, overcoming the various external and internal disturbances and operating conditions. In this study, the analysis of a tracking mount was performed for weight, wind loads, and inertia loads in order to verify its soundness. The results of the comparison between aluminum and steel were analyzed in order to select the optimal material for the fork and main housing part. In addition, the natural frequency and mode shape were predicted. Optimal material selection and structural integrity will also be verified using static analysis.

Analytical Study of High Speed Railway Braking Disc-hub for Enhancement of Cooling Performance (냉각 성능 향상을 위한 고속철도 제동 디스크 허브의 해석 연구)

  • Lee, Yong-Woo;Kim, Jang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.199-207
    • /
    • 2021
  • This study aimed to improve the performance of the KTX (Korea Train Express) brake system. To develop a braking disc-hub for the high-speed rail, the model performance was analyzed by finite element analysis, and the analysis results were verified using the braking test results. In addition, heat transfer analysis, thermal stress analysis, natural frequency analysis, and static analysis were conducted to examine the mechanical performance of the braking system. By deriving the design factors and conducting parametric analyses according to the shape of the hub, this study derived the optimal specifications that could improve heat dissipation and reduce weight. The cooling efficiency and structural performance of the optimization model were improved during braking compared to the existing model. It is expected that the design verification will be carried out through analyses of the optimal specifications so that it can be used in the development of brakes in railway vehicles and motor vehicles.

A Study on the Optimal Generation Conditions of Micro-Droplet in Electrostatic Spray Indirect Charging Method (정전 분무 간접 하전 방식에서 미세액적 최적 발생 조건에 관한 연구)

  • Jihee Lee;Sunghwan Kim;Haiyoung Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.79-87
    • /
    • 2024
  • This paper is a study on the optimal microdroplet generation conditions in indirect charging electrostatic spraying. Unlike the direct charging method, which applies power to the nozzle, the indirect charging method applies power to the discharge electrode between the nozzle and the collection electrode. Therefore, an electrically simplified system can be obtained by minimizing the insulation part a stable spray pattern can be obtained with a wide spray angle, and a stable spray pattern can be obtained with a wide spray angle. To conduct the study, an indirect charging type electrostatic spray visualization system was constructed and the static characteristics of the microdroplets were analyzed through image processing of the spray shape of the microdroplets. The total number of microdroplets and the number of microdroplets per power consumption are confirmed according to the changes in the distance between the discharge electrode and the collection electrode, the flow rate, and the applied voltage, which affect the generation of microdroplets, and using this, the optimal generation conditions are derived and the corresponding microdroplet size distribution was analyzed. As a result of the experiment, it was confirmed that the optimal generation condition was at a flow rate of 15 to 20 mL/min and a voltage of -22.5 to -25 kV in terms of the number of microdroplets, and at a flow rate of 15 to 20 mL/min and a voltage of -20 kV in terms of energy consumption efficiency.

MULTI STAGE SHAPE OPTIMIZATION OF CENTRIFUGAL FAN FOR HOME APPLIANCE USING CFD (전산유체역학을 활용한 가전 제품용 원심팬 블레이드의 단계별 형상 최적화)

  • Kim, J.S.;Kang, T.G.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.39-47
    • /
    • 2016
  • We conducted a multi-stage optimization to secure the desired performance of a centrifugal fan for home appliance in an early stage of product development. In optimization, the static pressure at the outlet of the fan is chosen as an objective function that is to be maximized, providing the required flow rate at the operating point of the fan. The optimization procedure begins with parameters for an initial baseline fan design. The baseline design is optimized by using a commercial optimization package. Accordingly, the corresponding blade models with a set of geometrical parameters are generated. Flow through a fan is simulated by solving the Reynolds-averaged Navier-Stokes equations. A multi-stage optimization scheme is employed to determine the family of optimum values for the parameters, leading to the pressure increase at the outlet of the fan. To validate the numerically obtained optimal design parameters, we fabricated the three types of fans using rapid prototyping and assessed the performance using a fan tester. Experimental results show that the design parameters at each stage satisfy the goal of optimization. The multi-stage optimization process turned out to be a useful tool in the development of a centrifugal fan.

Effects of geometric shape of LWSCR (lazy-wave steel catenary riser) on its global performance and structural behavior

  • Kim, Seungjun;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.247-279
    • /
    • 2018
  • This study aims to investigate the behavioral characteristics of the LWSCR (lazy-wave steel catenary riser) for a turret-moored FPSO (Floating Production Storage Offloading) by using fully-coupled hull-mooring-riser dynamic simulation program in time domain. In particular, the effects of initial geometric profile on the global performance and structural behavior are investigated in depth to have an insight for optimal design. In this regard, a systematic parametric study with varying the initial curvature of sag and arch bend and initial position of touch down point (TDP) is conducted for 100-yr wind-wave-current (WWC) hurricane condition. The FPSO motions, riser dynamics, constituent structural stress results, accumulated fatigue damage of the LWSCR are presented and analyzed to draw a general trend of the relationship between the LWSCR geometric parameters and the resulting dynamic/structural performance. According to this study, the initial curvature of the sag and arch bend plays an important role in absorbing transferred platform motions, while the position of TDP mainly affects the change of static-stress level.

Development of Composite Rollers for Polymer Film Processing (고분자 필름 제조 공정용 복합재료 롤러의 개발)

  • 방경근;이대길
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2001
  • The pressing roller was designed and manufactured with high modulus carbon fiber composite material to exploit the high specific stiffness of the composite material. the optimal stacking sequence for the pressing roller was obtained from the FE analysis and the shape of the rubber coating layer was determined based on the calculated deflection for the uniform pressure on the film along the axial length of the pressing roller. Then the static deflection of the manufactured composite pressing roller was experimentally evaluated in comparison with analysis result and dynamic characteristics were measured through vibrational test.

  • PDF

금속절삭시 CHIP 생성기구 및 절삭온도 예측을 위한 유한요소해석에 관한 연구

  • 황준;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.22-27
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting. This paper introduces some effects, such constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angles and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool, cutting temperature. Under the usual [lane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and rake angles. In this analysis, various cutting speeds and depth of cut are adopted. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Cutting temperature and Thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

A Study on the Characteristics of Fast Distributed Power Control Schemes in Cellular Network under Dynamic Channel (셀룰러 네트워크의 동적채널에서 빠른 분산 전력 제어 기법의 특성에 대한 연구)

  • Lee, Young-Dae;Park, Hyun-Sook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.49-55
    • /
    • 2008
  • To address the convergence issue of power control algorithms, a number of algorithms have been developed hat shape the dynamics of up-link power control for cellular network. Power algorithms based on fixed point iterations can be accelerated by the use of various methods, one of the simplest being the use of Newton iterations, however, this method has the disadvantage which not only needs derivatives of the cost function but also may be weak to noisy environment. we showed performance of the power control schemes to solve the fixed point problem under static or stationary channel. They proved goof performance to solve the fixed point problem due to their predictor based optimal control and quadratic convergence rate. Here, we apply the proposed power control schemes to the problem of the dynamic channel or to dynamic time varying link gains. The rigorous simulation results demonstrated the validity of our approach.

  • PDF

Baseplate Design to Improve Swaging Performance of Actuator in a HDD (HDD 액추에이터의 스웨이징성능향상을 위한 베이스플레이트 최적설계)

  • Lee, Haeng-Soo;Hong, Eo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.760-766
    • /
    • 2009
  • In the manufacturing process of HDD, ball swaging method is commonly used to joint the Head Gimbal Assembly(HGA) with the arm of the actuator. The hub on the HGA is placed into the hole of the actuator arm, and the hub and arm is bonded by the pressure of steel ball. The pressure for plastic deformation on the baseplate causes the undesirable deformation on HGA, such as tilting, flying height change of head. After obtaining the key parameters that have large sensitivity on the swaging process, the optimal shape of baseplate is proposed to increase the static performance during swaging process. Contribution of the proposed design for the swaging performance is verified by contact simulation with elasto-plastic deformation.

Determination of Tool Orientation in 5-axis Milling Using Potential Energy Method (포텐셜 에너지를 이용한 5축 NC 밀링의 공구방향 결정)

  • 조인행;이건우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.199-204
    • /
    • 1994
  • A method for determining the collision-free tool orientation for 5-axis milling is presented. In 5-axis milling, the proper tool orientation as well as the optimal CC-data has to be selected to machine the workpiece efficiently and accurately and accurately. Essentially, the tool orientation should be determined to avoid collisions between the tool and workpiece and to enable efficient machining. In this work, the tool orientation is determined at every CC-point which is assumed to be given. The procedure uses the potential energy method that assumes the tool and the part surfaces are charged with static electricity. This approach can detect can deteat both global and local collisions (gouging) irrespective of the tool shape. Further, in order to increase the machining efficiency, the material removal rate is maximized simultaneously.

  • PDF