Journal of the Society of Naval Architects of Korea
/
v.53
no.2
/
pp.108-114
/
2016
Recently, there has been a growing interest in marine leisure sports and high speed power boat for fishing. The prototype of 20 feet class power boat was developed and authors are joined in this government-led project. The research was performed to evaluate the optimal structure and design of the structural strength necessary to ensure the structural safety of the power boat. A new material ROCICORE fiber added to the mat and roving was adopted for high-power tenacity. ANSYS Workbench has been used to make the structural model, evaluate the strength and optimize the structural design. The response of the structure to quasi-static slamming loads according to the rules and regulations of ISO 12215-5, Lloyd’s Register of Shipping and Korean Register has been implemented and studied. An optimization study for the structural response is carried out by changing the plate thickness and section modulus of stiffeners. The power boat structure derived fuel efficiency is optimized by performing the best possible structural design to minimize the hull weight.
The effect of the sand blasting before TiAlN coating in the manufacture of WC hard metal alloy tips have been studied. For four different tips, according to the status of processing of the sand blasting and the coating, residual stress measurement by X-ray diffraction and several tests for mechanical properties have been conducted. The results suggest that there was no difference in static mechanical properties, such as hardness, surface roughness and elastic modulus, between two coatings. Furthermore, compressive residual stress was generated equally on their surfaces. Additionally, the compressive residual stress in substrate WC was found to increase greatly when subjected to sand blasting treatment. However, the compressive residual stress decrease after coating regardless of sand blasting treatment. Nevertheless, it is confirmed that the compressive residual stress generated in the coating after sand blasting is less than that in the non-sandblasting coating. This was attributed to the plastic deformation occurring in the WC substrate during coating after sand blasting. In contrast to the scratch test results, sand blasting was assumed to have a negative effect on the adhesion between the coating and substrate. This is because there is a high possibility of microcracks due to plastic deformation in the WC substrate under the coating after sand blasting.
Two different types of rubber aggregates (40 mesh rubber powder and 1-4 mm rubber particles respectively) were devised to substitute fine aggregates at 10%, 15%, 20% and 30% by volume in self-compacting concrete to investigate their basic mechanical properties. The results show that with the increase of rubber content, the reduction of compressive strength, splitting tensile strength and static modulus of elasticity gradually increase, and energy dissipation performance gradually increase. The rubber addition significantly reduces brittleness and decelerates damaged process. Whilst, the effect of rubber particles is greater when they are finer. Considering the mechanical properties, the optimal rubber content is 10%. It is recommended that the rubber volume content in rubberized concrete (RC) should not be higher than 20%. In addition, a constitutive model under uniaxial compression was proposed basing on the strain equivalent principle of Lemaitre and the damage theory, which was in good agreement with the test curves.
This study attempts to investigate the impact of thickness stretching and nonlinear hygro-thermo-mechanical loading on the bending behavior of FG beams. Young's modulus, thermal expansion, and moisture concentration coefficients vary gradually and continuously according to a power-law distribution in terms of the volume fractions of the constituent materials. In addition, the interaction between the thermal, mechanical, and moisture loads is involved in the governing equilibrium equations. Using the present developed analytical model and Navier's solution technique, the numerical results of non-dimensional stresses and displacements are compared with those obtained by other 3D theories. Furthermore, the present analytical model is appropriate for investigating the static bending of FG beams exposed to intense hygro-thermo-mechanical loading used for special technical applications in aerospace, automobile, and civil engineering constructions.
The aim of this work is a numerical comparison (FEM) between lattice pyramidal-core panel and honeycomb core panel for different core thicknesses. By evaluating the mid-span deflection, the shear rigidity and the shear modulus for both core types and different core thicknesses, it is possible to define which core type has got the best mechanical behaviour for each thickness and the evolution of that behaviour as far as the thickness increases. Since a specific base geometry has been used for the lattice pyramidal core, the comparison gives us the opportunity to investigate the unit cell strut angle giving the higher mechanical properties. The presented work considers a detailed FEM modelling of a standard 3-point bending test (ASTM C393/C393M Standard Practice). Detailed FEM modelling addresses to detailed discretization of cores by means of beam elements for lattice core and shell elements for honeycomb core. Facings, instead, have been modelled by using shell elements for both sandwich panels. On lattice core structure, elements of core and facings are directly connected, to better simulate the additive manufacturing process. Otherwise, an MPC-based constraint between facings and core has been used for honeycomb core structure. Both sandwich panels are entirely built of Aluminium alloy. Prior to compare the two models, the FEM sandwich panel model with lattice pyramidal core needs to be validated with 3-point bending test experimental results, in order to ensure a good reliability of the FEM approach and of the comparison. Furthermore, the analytical validation has been performed according to Allen's theory. The FEM analysis is linear static with an increasing midspan load ranging from 50N up to 500N.
Nanotechnology has emerged as a promising avenue for enhancing musical structures. In this study, we analyze the static behavior of laser harp (i.e., electronic musical instrument) reinforced with Zinc Oxide (ZnO) nanoparticles. Leveraging the piezoelectric properties of ZnO nanoparticles, the structure is subjected to an electric field for intelligent control. The electronic musical structure is situated in a foundation with vertical springs and shear modulus constants. We employ the exponential Shear Deformation Beam Theory (ESDBT) to mathematically model the structure. A micro-electro-mechanical model is employed to determine the equivalent properties of the system. By utilizing nonlinear stress-strain relations, energy methods, and Hamilton's principle, we derive the motion equations. The buckling load of the electronic musical beam is calculated using the Difference Quadrature Method (DQM). The primary objective of this study is to present a mathematical model for electronic musical beams and determining the buckling load of the structure and to investigate the influence of nanotechnology and electric fields on its buckling behavior. The buckling is the case when the structure becomes deforms and unstable. Our findings reveal that the application of negative external voltage to the electronic musical structure increases both the stiffness and the buckling load of the musical system. Furthermore, reinforcing the electronic musical structure with ZnO nanoparticles results in an increased buckling load. Notably, the maximum enhancement in the 28-day compressive and tensile strengths of samples containing zinc oxide nanoparticles compared to the control sample resulting in increases of 18.70% and 3.77%, respectively.
Sevim, Baris;Altunisik, Ahmet C.;Bayraktar, Alemdar
Computers and Concrete
/
v.14
no.5
/
pp.599-612
/
2014
This paper presents the effects of the construction stages using time dependent material properties on the structural behaviour of concrete arch dams. For this purpose, a double curvature Type-5 arch dam suggested in "Arch Dams" symposium in England in 1968 is selected as a numerical example. Finite element models of Type-5 arch dam are modelled using SAP2000 program. Geometric nonlinearity is taken into consideration in the construction stage analysis using P-Delta plus large displacement criterion. In addition, the time dependent material strength variations and geometric variations are included in the analysis. Elasticity modulus, creep and shrinkage are computed for different stages of the construction process. In the construction stage analyses, a total of 64 construction stages are included. Each stage has generally $6000m^3$ concrete volume. Total duration is taken into account as 1280 days. Maximum total step and maximum iteration for each step are selected as 200 and 50, respectively. The structural behaviour of the arch dam at different construction stages has been examined. Two different finite element analyses cases are performed. In the first case, construction stages using time dependent material properties are considered. In the second case, only linear static analysis (not considered construction stages) is taken into account. Variation of the displacements and stresses are obtained from the both analyses. It is highlighted that construction stage analysis using time dependent material strength variations and geometric variations has an important effect on the structural behaviour of arch dams. The maximum longitudinal, transverse and vertical displacements obtained from construction stages and static analyses are 1.35 mm and 0 mm; -8.44 and 6.68 mm; -4.00 and -9.90 mm, respectively. In addition, vertical displacements increase from the base to crest of the dam for both analyses. The maximum S11, S22 and S33 stresses are obtained as 1.60MPa and 2.84MPa; 1.39MPa and 2.43MPa; 0.60MPa and 0.50MPa, respectively. The differences between maximum longitudinal, transverse, and vertical stresses obtained from construction stage and static analyses are 78%, 75%, and %17, respectively. On the other hand, there is averagely 12% difference between minimum stresses for all three directions.
Park, Han-Min;Heo, Hwang-Sun;Sung, Eun-Jong;Nam, Kyeong-Hwan;Lim, Jae-Seop;Byeon, Hee-Seop
Journal of agriculture & life science
/
v.46
no.6
/
pp.75-86
/
2012
In this study, eco-friendly hybrid composite boards were manufactured from green tea, 3 kinds of charcoals and wood fiber for developing interior materials to reinforce the strength performances and the functionalities in addition to performances of the hybrid composite boards composed of green tea and wood fiber. The effects for the kind and the component ratio of raw materials on dynamic MOE (modulus of elasticity) were investigated, and static bending strength performances were nondestructively estimated. Dynamic MOEs were highest in the hybrid composite boards composed of green tea, fine charcoal and wood fiber on the whole. However, the difference caused by the kind of charcoals was small. These values decreased with increasing component ratios of green tea and charcoals. The hybrid composite boards using $E_1$ grade urea resin had the higher values than those using $E_0$ grade urea resin, however the difference between them markedly decreased than that of hybrid composite board composed of green tea and wood fiber, and it was found that these values were markedly improved than those of the hybrid composite boards composed of green tea and wood fiber. There were mostly high correlations with significance at 1% level between dynamic MOEs and static bending strength performances, and this means that the static bending strength performances can be estimated from dynamic MOE.
Sung, Chan Yong;Youn, Joon Ro;Kim, Kyung Tae;Kim, Young Ik
Korean Journal of Agricultural Science
/
v.25
no.1
/
pp.89-96
/
1998
This study was performed to evaluate the engineering properties of permeable polymer concrete with rice-husk ash. The following conclusions were drawn; 1. The highest sterngth was achieved by 50% filled rice husk-ash permeable polymer concrete, it was increased 24% by compresseve, 123% by tensile and 90% by bending strength than that of the normal cement concrete, respectively. 2. The static modulus of elasticity was in the range of $1.27{\times}10^5{\sim}1.75{\times}10^5kgf/cm^2$, which was approximately 58~70% of the normal cement concrete. The higher elastic modulus was showed by 50% filled rice-husk ash permeable polymer concrete, relatively. The poisson's number of permeable polymer concrete was less than that of the normal cement concrete. 3. The ultrasonic pulse velocity was in the range of 2,503~3,083m/sec, which was showed about the same compared to that of the normal cement concrete. The higher pulse velocity was showed by 50% filled rice-husk ash permeable polymer concrete. 4. The water permeability was in the range of $4.612{\sim}5.913{\ell}/cm^2/hr$, and it was largely dependent upon the mix design. These concrete can be used to the structures which need water permeability.
This study was performed to evaluate the stress-strain properties of surlightweight polymer concrete using synthetic lightweight aggregates. The following conclusions were drawn; 1. The dynamic modulus of elasticity was in the range of $1.514{\times}10^5{\sim}1.916{\times}10^5kgf/cm^2$, which was approximately 48~96% of that of the normal cement concrete. It was showed larger with the decrease of synthetic lightweight fine aggregate. 2. The static modulus of elasticity was in the range of $2.552{\times}10^4{\sim}4.386{\times}10^4kgf/cm^2$, which was showed lower compared to that of the normal cement concrete. The poisson's number of surlightweight polymer concrete was less than that of the normal cement concrete. 3. The stress-strain curves of surlightweight polymer concrete were showed smaller with the increase of expanded clay.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.