• Title/Summary/Keyword: static elastic coefficient

Search Result 40, Processing Time 0.025 seconds

Groutability enhancement by oscillatory grout injection: Verification by field tests

  • Kim, Byung-Kyu;Lee, In-Mo;Kim, Tae-Hwan;Jung, Jee-Hee
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2019
  • Grout injection is mainly used for permeability reduction and/or improvement of the ground by injecting grout material into pores, cracks, and joints in the ground. The oscillatory grout injection method was developed to enhance the grout penetration. In order to verify the level of enhancement of the grout, field grout injection tests, both static and oscillatory tests, were performed at three job sites. The enhancement in the permeability reduction and ground improvement effect was verified by performing a core boring, borehole image processing analysis, phenolphthalein test, scanning electron microscopy analysis, variable heat test, Lugeon test, standard penetration test, and an elastic wave test. The oscillatory grout injection increased the joint filling rate by 80% more and decreased the permeability coefficient by 33-68%, more compared to the static grout injection method. The constrained modulus of the jointed rock mass was increased by 50% more with oscillatory grout injection compared to the static grout injection, indicating that the oscillatory injection was more effective in enhancing the stiffness of the rock mass.

Elasto-plastic stability of circular cylindrical shells subjected to axial load, varying as a power function of time

  • Sofiyev, A.H.;Schnack, E.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.621-639
    • /
    • 2006
  • Stability of a cylindrical shell subject to a uniform axial compression, which is a power function of time, is examined within the framework of small strain elasto-plasticity. The material of the shell is incompressible and the effect of the elastic unloading is considered. Initially, employing the infinitesimal elastic-plastic deformation theory, the fundamental relations and Donnell type stability equations for a cylindrical shell have been obtained. Then, employing Galerkin's method, those equations have been reduced to a time dependent differential equation with variable coefficient. Finally, for two initial conditions applying a Ritz type variational method, the critical static and dynamic axial loads, the corresponding wave numbers and dynamic factor have been found. Using those results, the effects of the variations of loading parameters and the variations of power of time in the axial load expression as well as the variations of the radius to thickness ratio on the critical parameters of the shells for two initial conditions are also elucidated. Comparing results with those in the literature validates the present analysis.

Study for improvement of grounds subjected to cyclic loads

  • Mittal, Satyendra;Meyase, Kenisevi
    • Geomechanics and Engineering
    • /
    • v.4 no.3
    • /
    • pp.191-208
    • /
    • 2012
  • Due to rapid industrialisation, large scale infrastructure development is taking place worldwide. This includes railways, high speed highways, elevated roads etc. To meet the demands of society and industry, many innovative techniques and materials are being developed. In developed nations like USA, Japan etc. for railways applications, new material like geocells, geogrids are being used successfully to enable fast movement of vehicles. The present research work was aimed to develop design methodologies for improvement of grounds subjected to cyclic loads caused by moving vehicles on roads, rail tracks etc. Deformation behavior of ballast under static and cyclic load tests was studied based on square footing test. The paper presents a study of the effect of geo-synthetic reinforcement on the (cumulative) plastic settlement, of point loaded square footing on a thick layer of granular base overlying different compressible bases. The research findings showed that inclusion of geo-synthetics significantly improves the performance of ballasted tracks and reduces the foundation area. If the area is kept same, higher speed trains can be allowed to pass through the same track with insertion of geosynthetics. Similarly, area of machine foundation may also be reduced where geosynthetics is provided in foundation. The model tests results have been validated by numerical modeling, using $FLAC^{3D}$.

Influence of neck width on the performance of ADAS device with diamond-shaped hole plates

  • Wu, Yingxiong;Lu, Jianfeng;Chen, Yun
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.19-32
    • /
    • 2020
  • Metallic energy-dissipation dampers are widely used in structures. They are comprised of an added damping and stiffness (ADAS) device with many parallel, diamond-shaped hole plates, the neck width of which is an important parameter. However, no studies have analyzed the neck width's influence on the ADAS device's performance. This study aims to better understand that influence by conducting a pseudo-static test on ADAS, with three different neck widths, and performing finite element analysis (FEA) models. Based on the FEA results and mechanical theory, a design neck width range was proposed. The results showed that when the neck width was within the specified range, the diamond-shaped hole plate achieved an ideal yield state with minimal stress concentration, where the ADAS had an optimal energy dissipation performance and the brittle shear fracture on the neck was avoided. The theoretical values of the ADAS yield loads were in good agreement with the test values. While the theoretical value of the elastic stiffness was lower than the test value, the discrepancy could be reduced with the proposed modified coefficient.

Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions

  • Alimirzaei, S.;Mohammadimehr, M.;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.485-502
    • /
    • 2019
  • In this research, the nonlinear static, buckling and vibration analysis of viscoelastic micro-composite beam reinforced by various distributions of boron nitrid nanotube (BNNT) with initial geometrical imperfection by modified strain gradient theory (MSGT) using finite element method (FEM) are presented. The various distributions of BNNT are considered as UD, FG-V and FG-X and also, the extended rule of mixture is used to estimate the properties of micro-composite beam. The components of stress are dependent to mechanical, electrical and thermal terms and calculated using piezoelasticity theory. Then, the kinematic equations of micro-composite beam using the displacement fields are obtained. The governing equations of motion are derived using energy method and Hamilton's principle based on MSGT. Then, using FEM, these equations are solved. Finally the effects of different parameters such as initial geometrical imperfection, various distributions of nanotube, damping coefficient, piezoelectric constant, slenderness ratio, Winkler spring constant, Pasternak shear constant, various boundary conditions and three material length scale parameters on the behavior of nonlinear static, buckling and vibration of micro-composite beam are investigated. The results indicate that with an increase in the geometrical imperfection parameter, the stiffness of micro-composite beam increases and thus the non-dimensional nonlinear frequency of the micro structure reduces gradually.

The Stiffness Analysis and Optimization of the Rubber Seat Considering Nonlinear Behavior (비선형거동을 고려한 방진고무의 강성해석 및 최적설계)

  • Lee, Dong-Hoon;Seo, Sang-Ho;Yun, Young-Hoon;Park, Jin-Goo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.244-249
    • /
    • 2002
  • Rubber seat is extensively used to reduce the vibration of machine or structure. Over the years an enormous effort has been put into developing procedures to provide properties of rubber material for design function. However, there are still a lot of difficulties to analyze static characteristics of rubber components with hyper elasticity and nonlinear large deformation. In this paper material property is obtained by strain-stress curve using a tension test. Mooney-Rivlin Coefficients are gotten by fitting strain-stress curve. The visco-elastic characteristics of refrigerator rubber mount is determined by using ANSYS. And to minimize the rubber stiffness, the rubber seat shape optimization is performed.

  • PDF

Case Study Top-Base Foundation Static Loading Test in Reclaimed Land (매립지반의 팽이말뚝 평판재하시험 사례 연구)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Lee, Ae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.721-728
    • /
    • 2008
  • Top-Base Method is a stabilization method for light weight structures particularly in the soft ground. It is widely used for the increment of bearing capacity and the effect of restraining settlement when the bearing capacity of the ground is not enough. Top-shaped cone concrete foundations are installed in graveled laid over soft ground. The principle of the basic method is to maximize effect of dispersing the overburden pressure by increasing the contact area of the top-shaped cone. Therefore, the bearing capacity is increased and the settlement is decreased by the embedded resistance of pile part in the ground. In this paper, the plate bearing test was conducted to evaluate the feasibility of Top-Base foundation. Based on the test results, the coefficient of subgrade reaction, elastic modulus, and settlement of foundation on reclaimed land was derived.

  • PDF

Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.4
    • /
    • pp.297-314
    • /
    • 2019
  • Dynamic stability of a porous metal foam nano-dimension plate on elastic substrate exposed to bi-axial time-dependent forces has been studied via a novel 3-variable plate theory. Various pore contents based on uniform and non-uniform models have been introduced. The presented plate model contains smaller number of field variables with shear deformation verification. Hamilton's principle will be utilized to deduce the governing equations. Next, the equations have been defined in the context of Mathieu-Hill equation. Correctness of presented methodology has been verified by comparison of derived results with previous data. Impacts of static and dynamical force coefficients, non-local coefficient, foundation coefficients, pore distributions and boundary edges on stability regions of metal foam nanoscale plates will be studied.

Investigation of dynamic response of "bridge girder-telpher-load" crane system due to telpher motion

  • Maximov, Jordan T.;Dunchev, Vladimir P.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.485-507
    • /
    • 2018
  • The moving load causes the occurrence of vibrations in civil engineering structures such as bridges, railway lines, bridge cranes and others. A novel engineering method for separation of the variables in the differential equation of the elastic line of Bernoulli-Euler beam has been developed. The method can be utilized in engineering structures, leading to "a beam under moving load model" with generalized boundary conditions. This method has been implemented for analytical study of the dynamic response of the metal structure of a single girder bridge crane due to the telpher movement along the bridge girder. The modeled system includes: a crane bridge girder; a telpher, moving with a constant horizontal velocity; a load, elastically fixed to the telpher. The forced vibrations with their own frequencies and with a forced frequency, due to the telpher movement, have been analyzed. The loading resulting from the telpher uniform movement along the bridge girder is cyclical, which is a prerequisite for nucleation and propagation of fatigue cracks. The concept of "dynamic coefficient" has been introduced, which is defined as a ratio of the dynamic deflection of the bridge girder due to forced vibrations, to the static one. This ratio has been compared with the known from the literature empirical dynamic coefficient, which is due to the telpher track unevenness. The introduced dynamic coefficient shows larger values and has to be taken into account for engineering calculations of the bridge crane metal structure. In order to verify the degree of approximation, the obtained results have been compared with FEM outcomes. An additional comparison has been made with the exact solution, proposed by Timoshenko, for the case of simply supported beam subjected to a moving force. The comparisons show a good agreement.

Measurement of Mechanical and Physical Properties of Pepper for Particle Behavior Analysis

  • Nam, Ju-Seok;Byun, Jun-Hee;Kim, Tae-Hyeong;Kim, Myoung-Ho;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.43 no.3
    • /
    • pp.173-184
    • /
    • 2018
  • Purpose: This study was conducted to investigate the mechanical and physical properties of a Korean red pepper variety for particle behavior analysis. Methods: Poisson's ratio, modulus of elasticity, shear modulus, density, coefficient of restitution, and coefficient of friction were derived for "AR Legend," which is a domestic pepper variety. The modulus of elasticity and Poisson's ratio were measured through a compression test using a texture analyzer. The shear modulus was calculated from the modulus of elasticity and Poisson's ratio. The density was measured using a water pycnometer method. The coefficient of restitution was measured using a collision test, and the static and dynamic friction coefficients were measured using a inclined plane test. Each test was repeated 3-5 times except for density measurement, and the results were analyzed using mean values. Results: Poisson's ratios for the pepper fruit and pepper stem were 0.295 and 0.291, respectively. Elastic moduli of the pepper fruit and pepper stem were $1.152{\times}10^7Pa$ and $3.295{\times}10^7Pa$, respectively, and the shear moduli of the pepper fruit and pepper stem were $4.624{\times}10^6Pa$ and $1.276{\times}10^7Pa$, respectively. The density of the pepper fruit and the pepper stem were $601.8kg/m^3$ and $980.4kg/m^3$, respectively. The restitution coefficients between pepper fruits, pepper stems, a pepper fruit and a pepper stem, a pepper fruit and plastic, and a pepper stem and plastic were 0.383, 0.218, 0.277, 0.399, and 0.148, respectively. The coefficients of static friction between pepper fruits, pepper stems, a pepper fruit and a pepper stem, a pepper fruit and plastic, and a pepper stem and plastic were 0.455, 0.332, 0.306, 0.364, and 0.404, respectively. The coefficients of dynamic friction between a pepper fruit and plastic and a pepper stem and plastic were 0.043 and 0.034, respectively.