• 제목/요약/키워드: static design

검색결과 3,384건 처리시간 0.03초

공작기계 베어링 결합부의 전산 모델링 (Computational Modeling of the Bearing Coupling Section of Machine Tools)

  • 김현명;서재우;박형욱
    • 한국정밀공학회지
    • /
    • 제29권10호
    • /
    • pp.1050-1055
    • /
    • 2012
  • The bearing coupling section of machine tools is the most important factor to determine their static/dynamic stiffness. To ensure the proper performance of machine tools, the static/dynamic stiffness of the rotating system has to be predicted on the design stage. Various parameters of the bearing coupling section, such as the spring element, node number and preload influence the characteristics of rotating systems. This study focuses on the prediction of the static and dynamic stiffness of the rotating system with the bearing coupling section using the finite element (FE) model. MATRIX 27 in ANSYS has been adopted to describe the bearing coupling section of machine tools because the MATRIX 27 can describe the bearing coupling section close to the real object and is applicable to various machine tools. The FE model of the bearing couple section which has the sixteen node using MATRIX 27 was constructed. Comparisons between finite element method (FEM) predictions and experimental results were performed in terms of the static and dynamic stiffness.

Relative static and dynamic performances of composite conoidal shell roofs

  • Bakshi, Kaustav;Chakravorty, Dipankar
    • Steel and Composite Structures
    • /
    • 제15권4호
    • /
    • pp.379-397
    • /
    • 2013
  • Conoidal shells are doubly curved stiff surfaces which are easy to cast and fabricate due to their singly ruled property. Application of laminated composites in fabrication of conoidal shells reduces gravity forces and mass induced forces compared to the isotropic constructions due to the high strength to weight ratio of the material. These light weight shells are preferred in the industry to cover large column free open spaces. To ensure design reliability under service conditions, detailed knowledge about different behavioral aspects of conoidal shell is necessary. Hence, in this paper, static bending, free and forced vibration responses of composite conoidal shells are studied. Lagrange's equation of motion is used in conjunction with Hamilton's principle to derive governing equations of the shell. A finite element code using eight noded curved quadratic isoparametric elements is developed to get the solutions. Uniformly distributed load for static bending analysis and three different load time histories for solution of forced vibration problems are considered. Eight different stacking sequences of graphite-epoxy composite and two different boundary conditions are taken up in the present study. The study shows that relative performances of different shell combinations in terms of static behaviour cannot provide an idea about how they will relatively behave under dynamic loads and also the fact that the points of occurrence of maximum static and dynamic displacement may not be same on a shell surface.

시각정보 유입 특성에 따른 정적 기립균형 분석 (Analysis of the Static Uprighting Balance in the Visual Input Characteristics)

  • 남건우;하미숙
    • 대한물리치료과학회지
    • /
    • 제22권1호
    • /
    • pp.11-17
    • /
    • 2015
  • Purpose : The current study examines changes of static uprighting balance in the visual input characteristics. Method : Total 50 person(male 16, female 34) were participated in this study. They were tested with 'hole in the card' for identification of dominant eye's side, then they were divided 3 groups(both visual input group, dominant visual input group, and non-dominant visual input group). 3 groups were measured with Romberg test on the force platform device to compare the static uprighting balance characteristics ; moving distance, mean velocity, and sway area of the CoM(center of mass), during 20 seconds. Results : The results by one-way repeated measure ANOVA were as follows. In moving distance and mean velocity of CoM, non-dominant visual input group was unstable than dominant visual group and both visual input group(p<0.05). But, in sway area of CoM, significant difference was not existed statistically. Conclusion : These result can be applied to design the static uprighting balance program using visual input mediation.

  • PDF

동하중에서 변환된 등가정하중에 의한 최적화 방법의 수학적 고찰 (Mathematical Proof for Structural Optimization with Equivalent Static Loads Transformed from Dynamic Loads)

  • 박경진;강병수
    • 대한기계학회논문집A
    • /
    • 제27권2호
    • /
    • pp.268-275
    • /
    • 2003
  • Generally, structural optimization is carried out based on external static loads. All forces have dynamic characteristics in the real world. Mathematical optimization with dynamic loads is extremely difficult in a large-scale problem due to the behaviors in the time domain. The dynamic loads are often transformed into static loads by dynamic factors, design codes, and etc. Therefore, the optimization results can give inaccurate solutions. Recently, a systematic transformation has been proposed as an engineering algorithm. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. Thus, many load cases are used as the multiple leading conditions which are not costly to include in modern structural optimization. In this research, it is mathematically proved that the solution of the algorithm satisfies the Karush-Kuhn-Tucker necessary condition. At first, the solution of the new algorithm is mathematically obtained. Using the termination criteria, it is proved that the solution satisfies the Karush-Kuhn-Tucker necessary condition of the original dynamic response optimization problem. The application of the algorithm is discussed.

100 kWh급 초전도 베어링의 지름방향 준정적 특성 (Quasi-static Characteristics in Radial Direction of 100 kWh Class Superconductor Bearing)

  • 정세용;박병준;한영희;박병철;이정필;한상철
    • Progress in Superconductivity
    • /
    • 제12권1호
    • /
    • pp.27-31
    • /
    • 2010
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. Many aspects of the quasi-static behavior of flywheel rotors still need to be studied closely, and the rotors require a stable and highly efficient supporting system such as high temperature superconductor (HTS) bearings, which offer dynamic stability without the use of active control. Quasi-static properties of HTS bearings in the radial direction provide data to solve problems which may occur in a running system. Since stiffness in countering rotor vibration is the main parameter for designing an HTS bearing system, we investigated the quasi-static properties of the magnetic force between permanent magnets(PMs) and HTS bulks in the radial direction. We measured radial stiffness, and discovered that bearing stiffness varied greatly depending on the number of active HTS bulks. This is valuable data for predicting the change in stiffness during partial HTS bearing failure. The quasi-static test results are used for optimal design and performance prediction for the 100 kWh class superconductor bearing.

정적 대변형을 받고 있는 점탄성 재료의 동적 물성치 규명 시험 (Testing for Identification of Dynamic Properties of Viscoelastic Material Subject to Large Static Deformation)

  • 이완술;이호정;조지현;김진성;윤성기;김광준
    • 한국소음진동공학회논문집
    • /
    • 제13권2호
    • /
    • pp.132-143
    • /
    • 2003
  • Viscoelastic components for vibration isolation or shock absorption in automobiles, machines and buildings are often subject to a high level of static deformation. From the dynamic design point of view, it is requisite to predict dynamic complex stiffness of viscoelastic components accurately and efficiently. To this end, a systematic procedure for complex modulus measurement of the viscoelastic material under large static deformation is often required in the industrial fields. In this paper, dynamic test conditions and procedures for the viscoelastic material under small oscillatory load superimposed on large static deformation are discussed. Various standard test methods are investigated in order to select an adequate test methodology. The influence of fixed boundary condition in the compression tests upon complex stiffness are investigated and an effective correction technique is proposed. Then the uniaxial tension and compression tests are performed and its results are compared with analysis results from conventional constitutive models.

Improved modeling of equivalent static loads on wind turbine towers

  • Gong, Kuangmin;Chen, Xinzhong
    • Wind and Structures
    • /
    • 제20권5호
    • /
    • pp.609-622
    • /
    • 2015
  • This study presents a dynamic response analysis of operational and parked wind turbines in order to gain better understanding of the roles of wind loads on turbine blades and tower in the generation of turbine response. The results show that the wind load on the tower has a negligible effect on the blade responses of both operational and parked turbines. Its effect on the tower response is also negligible for operational turbine, but is significant for parked turbine. The tower extreme responses due to the wind loads on blades and tower of parked turbine can be estimated separately and then combined for the estimation of total tower extreme response. In current wind turbine design practice, the tower extreme response due to the wind loads on blades is often represented as a static response under an equivalent static load in terms of a concentrated force and a moment at the tower top. This study presents an improved equivalent static load model with additional distributed inertial force on tower, and introduces the square-root-of-sum-square combination rule, which is shown to provide a better prediction of tower extreme response.

베어링특성에 따른 HSK 공구시스템의 정적 및 동적 거동의 유한요소해석 (An Analysis of Static and Dynamic Behavior of the HSK Tooling System According to Bearing Characteristics)

  • 박진효;김정석;구민수;강익수;김기태
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.346-352
    • /
    • 2010
  • Recently, the high-tech industries, such as the aerospace industry, the auto industry, and the electronics industry, are growing up considerably. Because of that, high machining accuracy and productivity of precision parts have been required. The tooling system is important part in the machining center. HSK tooling system is more suitable than BT tooling system for that of high speed machining center. It is because static stiffness and machining accuracy of HSK tooling system are higher than those of BT tooling system. In this paper, static and dynamic behavior of the HSK tooling System is analyzed according to bearing characteristics and lightweight parts. In order that, three different models of the HSK tooling system are modelled by using a 3D modeling/design program. More stable one in the models of HSK tooling system can be selected by using the FEA(Finite Element Analysis).

Effects of Motor Imagery Training and Balance Training on Static Balance: A Quasi-Experimental Study

  • Gim, Mina;Choi, Junghyun;Ga, Heayoung
    • 국제물리치료학회지
    • /
    • 제11권1호
    • /
    • pp.1999-2004
    • /
    • 2020
  • Background: Although studies on physical motor learning through motor imagery training have been conducted in various fields, studies on its effectiveness are still considered insufficient. Objective: To investigate the effect of motor imagery training and balance training on static balance of asymptomatic adults in their 20s. Design: A quasi-experimental study. Methods: Thirty-six adults in their 20s who passed the tandem stance test were randomized to the motor imagery training group (MIG, n=12), motor imagery with balance training group (MIBG, n=12), and balance training group (BG, n=12). Each group underwent their respective interventions three times a week for four weeks, and changes in static balance were analyzed using multivariate analysis of variance. Results: Trace length was significantly lower in the MIBG than in the MIG and BG (P<.05), and a significant reduction in trace length in the MIBG was observed after the intervention as compared to the baseline (P<.05). Furthermore, a significantly lower velocity was observed in the MIBG than in the MIG and BG (P<.05), and a significant reduction of velocity in the MIBG was more observed after the intervention compared to the baseline (P<.05). Conclusion: These results suggest that motor imagery training enhance static balance in healthy college students.

Dynamic to static eccentricity ratio for site-specific earthquakes

  • Kamatchi, P.;Ramana, G.V.;Nagpal, A.K.;Iyer, Nagesh R.;Bhat, J.A.
    • Earthquakes and Structures
    • /
    • 제9권2호
    • /
    • pp.391-413
    • /
    • 2015
  • Damage of torsionally coupled buildings situated on soil sites has been reported in literature, however no site-specific studies are available for torsionally coupled buildings having site characteristics as a parameter. Effect of torsion is being accounted in seismic codes by the provision of design eccentricity where the dynamic to static eccentricity ratio is a parameter. In this paper, a methodology to determine dynamic to static eccentricity ratio of torsionally coupled buildings has been demonstrated for Delhi region for two torsionally coupled buildings on three soil sites. The variations of average and standard deviations of frame shears for stiff and flexible edges are studied for four eccentricity ratios for the two buildings for the three sites. From the limited studies made, it is observed that the dynamic to static eccentricity ratios observed for site-specific earthquakes are different from Indian seismic code specified value, hence a proposal is made to include a comment in Indian seismic code. Methodology proposed in this paper can be adopted for any region, for the estimation of dynamic to static eccentricity ratio for site specific earthquake.