• Title/Summary/Keyword: static cyclic loading

Search Result 248, Processing Time 0.031 seconds

Static and Fatigue Fracture Assessment of Hybrid Composite Joint for the Tilting Car Body (틸팅차량용 차체의 Hybrid 복합재 접합체결부의 정적 및 피로 파괴 평가)

  • Jung, Dal-Woo;Kim, Jung-Seok;Seo, Sueng-Il;Jo, Se-Hyun;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.166-173
    • /
    • 2007
  • Fatigue fracture behavior of a hybrid bolted joint was evaluated in comparison to the case of static fracture. Two kinds of specimens were fabricated for the mechanical tests; a hybrid bolted joint specimen for the shear test and a hybrid joint part specimen applied in the real tilting car body for the bending test. Characteristic fracture behaviors of those specimens under cyclic toads were obviously different from the case under static loads. For the hybrid bolted joint specimen, static shear loading caused the fracture of the bolt body itself in a pure shear mode, whereas cyclic shear loading brought about the fracture at the site of local tensile stress concentration. For the hybrid joint part specimen, static bend loading caused the shear deformation and fracture in the honeycomb core region, while cyclic bend loading did the delamination along the interface between composite skin and honeycomb core layers as well as the fracture of welded joint part. Experimental results obtained by static and fatigue tests were reflected in modifications of design parameters of the hybrid joint structure in the real tilting car body.

Behavior of Fatigue Crack Initiation and Growth in SM45C Steel under Biaxial Loading (이축하중을 받는 SM45C강의 피로균열의 발생과 성장거동)

  • KIM SANG-TAE;PARK SUN-HONG;KWUN SOOK-IN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.84-90
    • /
    • 2004
  • Fatigue tests were conducted on SM45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading systems, were employed fully-reserved cyclic torsion without a superimposed static tension or compression fully-reserved cyclic torsion with a superimposed static tension and fully-reserved cyclic torsion with a superimposed static compression. The test results showed that a superimposed static tensile mean stress reduced fatigue life however a superimposed static compressive mean stress increased fatigue life. Experimental results indicated that cracks were initiated on planes of maximum shear strain whether or not the mean stresses were superimposed. A biaxial mean stress had an effect on the direction that the cracks nucleated and propagated at stage 1 (mode II).

Glass FRP-Bonded RC Beams under Cyclic Loading

  • Tan, Kiang-Hwee;Saha, Mithun-Kumar
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.45-55
    • /
    • 2007
  • Ten beams bonded with glass fiber reinforced polymer (GFRP) laminates were tested under cyclic loading with the load range and the FRP reinforcement ratio as test parameters. The maximum load level during cyclic loading was 55%, 65% and 75% of the static flexural strength while the minimum load level was kept constant at 35%. Deflections of the beams at the end of 525000 cycles were found to increase by 16% and 44% when the maximum load level was increased from 55% to 65% and 75% of the static flexural strength, respectively. Beams with FRP reinforcement ratios of 0.64% and 1.28% were found to exhibit lesser deflections of about 15% and 20%, respectively, compared to a similar beam without FRP reinforcement. An analytical approach based on cycle-dependent effective moduli of elasticity of concrete and FRP reinforcement is presented and found to predict the deflections of the test beams well.

Numerical investigation of RC structural walls subjected to cyclic loading

  • Cotsovos, D.M.;Pavlovic, M.N.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.215-238
    • /
    • 2005
  • This work is based on a nonlinear finite-element model with proven capacity for yielding realistic predictions of the response of reinforced-concrete structures under static monotonically-increasing loading. In it, the material description relies essentially on the two key properties of triaxiality and brittleness and, thus, is simpler than those of most other material models in use. In this article, the finite-element program is successfully used in investigating the behaviour of a series of RC walls under static cyclic loading. This type of loading offers a more strenuous test of the validity of the proposed program since cracks continuously form and close during each load cycle. Such a test is considered to be essential before attempting to use the program for the analysis of concrete structures under seismic excitation in order to ensure that the solution procedure adopted is numerically stable and can accurately predict the behaviour of RC structures under such earthquake-loading conditions. This is achieved through a comparative study between the numerical predictions obtained presently from the program and available experimental data.

Flexural Behaviour of RC Beams with New types of Loop Joints under Cyclic Loading (반복 하중을 받는 신형식 루프 이음 RC보의 휨거동)

  • Ryu Hyung Keun;Shen zhe hao;Joo Bong Chul;Park Seong Ryong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.44-47
    • /
    • 2004
  • Since bridge decks have many cyclic loadings by such as moving loads in a whole life, effects of cyclic loading as well as static loading should be considered. Particularly, in a view of serviceability and durability, structural performance by cyclic service loadings is very important. In this paper, experimental studies on flexural behavior of RC beams with new types of loop joints under cyclic loadings were conducted. Then the structural behavior for serviceability and strength were discussed.

  • PDF

Flexural Behaviour of RC Beams with Loop Joints Under Cyclic Loading (반복 하중을 받는 루프 이음 RC보의 휨거동)

  • Ryu Hyung Keun;Chang Sung Pil;Kim Young Jin;Joo Bong Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.10-13
    • /
    • 2004
  • Since bridge decks have many cyclic loadings by such as moving loads in a whole life, effects of cyclic loading as well as static loading should be considered. Particularly, in a view of serviceability and durability, structural performance under cyclic service loadings is very important. In this paper, experimental studies on flexural behavior of RC beams with loop joints under cyclic loadings were conducted. Then the structural behavior for serviceability and strength were discussed.

  • PDF

Static and Repeat Loads Model Test on Soft Clay Layer due to the Geotextile Reinforcement (토목섬유로 보강된 연약지반의 정.동적 모형실험)

  • Kim, Young-Su;Kwon, Sung-Mok;Kim, Yeun-Wook;Kim, Hyoung-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.232-239
    • /
    • 2005
  • Recently geosynthetics that can be constructed on soft ground have been used for reinforcement and separation in various ways. Through laboratory model tests and numerical analysis, in this study, estimated the suitability of cable elements and appropriate input factors considering loading effect in modeling of geosynthetics. First, in laboratory model tests, geosynthetics were constructed on the clay, and covered with the thickness, 7.5cm of sand mat. And then static and dynamic model tests were performed measuring loading, settlement, ground lateral displacement, and displacements of geosynthetics, but, for cyclic loading, bearing capacity increased linearly with stiff slop because cyclic loading with constant cyclic pressure compacted the ground. Numerical analysis were performed with FLAC 4.0 2D using Mohr-Coulomb and Modified Cam-Clay models, and they compared with the results of model tests. Cable elements of FLAC in modeling geosynthetics couldn't consider the characteristics of geosynthetics that increase shear strength between geosynthetics and clay according to the loading increase. Therefore, in this study, appropriate equation that can consider loading effects in Cable elements was proposed by Case Study.

  • PDF

Experiment of single screw piles under inclined cyclic pulling loading

  • Dong, Tian Wen;Zheng, Ying Ren
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.801-810
    • /
    • 2015
  • The ultimate pullout capacity under inclined dynamic loading is an important measure of the destruction degree of vertical screw piles (anchors) under dynamic actions. Based on the static and dynamic tests on two kinds of model screw piles, the ultimate bearing capacity was researched considering different distance-width ratio of blade (D/W) and preloading ratio. The results compared well with other experimental data available in the literature. This research reveals that D/W might determine the failure model of the piles (anchors), for example D/W = 3.14 or 5; a critical dynamic-static loading ratio (DSLR) existed in the experiments. The critical DSLR was reached under the conditions of 40%~60% preloading (D/W = 3.14) or 20%~40% preloading (D/W = 5), respectively.

Performance Evaluation on Static Loading and Cyclic Loading for Structural Insulated Panels (구조용단열패널의 정적가력과 반복가력 성능 평가)

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.33-39
    • /
    • 2013
  • Structural insulated panels, structurally performed panels consisting of a plastic insulation bonded between two structural panel facings, are one of emerging products with a viewpoint of its energy and construction efficiencies. These components are applicable to fabricated wood structures. In Korea, there are few technical documents regulated structural performance and engineering criteria in domestic market. This study was conducted to identify fundamental performance of both monotonic load and quasi static cyclic load for SIPs in shear wall application. Static test results showed that maximum load was 44.3kN, allowable shear load was 6.1kN/m, shear stiffness was 1.23 M N/m, and ductility ratio was 3.6. Cyclic test was conducted by two kinds of specimens : single panel and double panels. Cyclic test results, which were equivalent to static test results, showed that maximum load was 45.42kN, allowable shear load was 6.3kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. From performance of structural tests, it was recommended that the allowable shear load for panels was at least 6.1kN/m.