• 제목/요약/키워드: static bending and stress analyses

검색결과 19건 처리시간 0.02초

3차원 8절점 비적합 고체요소에 의한 복합재판의 순수굽힘문제의 정적.동적해석 (Static and Dynamic Analyses of Pure Bending Problems of Composite Plates using Non-Conforming 3-Dimensional 8-Node Solid Element)

  • 윤태혁;권영두
    • 한국해양공학회지
    • /
    • 제12권2호통권28호
    • /
    • pp.1-21
    • /
    • 1998
  • In this paper, a non-conforming 3-D 8-node solid element(MQM10) has beets applied to the analyses of static and dynamic bending problems of laminated composite plates The QM10 element exhibits stiffer bending stiffness which is caused by the reduction of degree of freedom from Q11 element. As an effective way to correct the relative stiffness stiffening phenomenon the modification of Gauss sampling points for composite plates is proposed. The quantity of modification is a function of material properties. Also, another two modified equations are obtained, one is modification for stress, and the other is modification of coefficient of shear modulus in free vibration. It is noted that MQM10 element can analyse the static and free vibration problems of various 3-dimensional composite plates composed of unidirectional laminae, woven laminae or braided laminae. The results of MQM10 element are in good agreement with those of 20-node element.

  • PDF

Influence of clamped-clamped boundary conditions on the mechanical stress, strain and deformation analyses of cylindrical sport equipment

  • Yuhao Yang;Mohammad Arefi
    • Geomechanics and Engineering
    • /
    • 제35권5호
    • /
    • pp.465-473
    • /
    • 2023
  • The higher order shear deformable model and an exact analytical method is used for analytical bending analysis of a cylindrical shell subjected to mechanical loads, in this work. The shell is modelled using sinusoidal bivariate shear strain theory, and the static governing equations are derived using changes in virtual work. The eigenvalue-eigenvector method is used to exactly solve the governing equations for a constrained cylindrical shell The proposed kinematic relation decomposes the radial displacement into bending, shearing and stretching functions. The main advantage of the method presented in this work is the study of the effect of clamping constraints on the local stresses at the ends. Stress, strain, and deformation analysis of shells through thickness and length.

부유식 해양플랜트 계류 체인의 면외굽힘 거동에 대한 연구 (A Study on Out-of-Plane Bending Mechanism of Mooring Chains for Floating Offshore Plants)

  • 임유창;김경수;정준모;강찬회
    • 대한조선학회논문집
    • /
    • 제47권4호
    • /
    • pp.580-588
    • /
    • 2010
  • OPB(out-of-plane bending)-induced failure of mooring chain was firstly addressed by CALM (catenary anchor leg mooring)-type offloading buoy, located approximately one mile away from the bow of the Girassol FPSO which was installed offshore area of Angola in September 2001. This study deals with verifying the load transfer mechanism between the first free chain link and connected two chain links inside the chain hawse. OPB moment to angle variation relationships are proposed by extensive parametric study where the used design variables are static friction coefficients, proof test loads, nominal tension forces, chain link diameters, chain link grades and chain link types. The stress ranges due to OPB moments are obtained using nonlinear FEAs (finite element analyses). Final stress ranges are derived considering ones from IPT (in-plane tension) forces. Also a formula for OPB fatigue assessment is briefly introduced.

Local buckling of reinforcing steel bars in RC members under compression forces

  • Minafo, Giovanni
    • Computers and Concrete
    • /
    • 제22권6호
    • /
    • pp.527-538
    • /
    • 2018
  • Buckling of longitudinal bars is a brittle failure mechanism, often recorded in reinforced concrete (RC) structures after an earthquake. Studies in the literature highlights that it often occurs when steel is in the post elastic range, by inducing a modification of the engineered stress-strain law of steel in compression. A proper evaluation of this effect is of fundamental importance for correctly evaluating capacity and ductility of structures. Significant errors can be obtained in terms of ultimate bending moment and curvature ductility of an RC section if these effects are not accounted, as well as incorrect evaluations are achieved by non-linear static analyses. This paper presents a numerical investigation aiming to evaluate the engineered stress-strain law of reinforcing steel in compression, including second order effects. Non-linear FE analyses are performed under the assumption of local buckling. A role of key parameters is evaluated, making difference between steel with strain hardening or with perfectly plastic behaviour. Comparisons with experimental data available in the literature confirm the accuracy of the achieved results and make it possible to formulate recommendations for design purposes. Finally, comparisons are made with analytical formulations available in the literature and based on obtained results, a modification of the stress-strain law model of Dhakal and Maekawa (2002) is proposed for fitting the numerical predictions.

축예하중을 가한 알루미늄/복합재료 동시경화 샤프트의 비틀림 피로 특성 (Torsional Fatigue Characteristics of Aluminum/Composite Co-Cured Shafts with Axial Compressive Preload)

  • Kim, Jong-Woon;Hwang, Hui-Yun;Lee, Dai-Gil
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.183-186
    • /
    • 2003
  • Long shafts for power transmission should transmit torsional load with vibrational stability. Hybrid shafts made of unidirectional fiber-reinforced composite and metal have high fundamental bending natural frequency as well as high torque transmission capability. However, thermal residual stresses due to the coefficient difference of thermal expansion of the composite and metal are developed so that the high residual stresses decrease fatigue resistance of the hybrid shafts, especially at low operating temperatures. In this work, axial compressive preload was given to the shaft in order to change the residual stresses. Static and fatigue torsional tests were performed and correlated with stress analyses with respect to the preload and service temperature.

  • PDF

Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners

  • Zand, Ahmed W. Al;Badaruzzaman, W.H. Wan;Ali, Mustafa M.;Hasan, Qahtan A.;Al-Shaikhli, Marwan S.
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.123-139
    • /
    • 2020
  • The tube outward local buckling of Concrete-Filled Steel Tube (CFST) beam under high compression stress is still considered a critical problem, especially for steel tubes with a slender section compared to semi-compact and compact sections. In this study, the flexural performance of stiffened slender cold-formed square tube beams filled with normal concrete was investigated. Fourteen (14) simply supported CFST specimens were tested under static bending loads, stiffened with different shapes and numbers of steel stiffeners that were provided at the inner sides of the tubes. Additional finite element (FE) CFST models were developed to further investigate the influence of using internal stiffeners with varied thickness. The results of tests and FE analyses indicated that the onset of local buckling, that occurs at the top half of the stiffened CFST beam's cross-section at mid-span was substantially restricted to a smaller region. Generally, it was also observed that, due to increased steel area provided by the stiffeners, the bending capacity, flexural stiffness and energy absorption index of the stiffened beams were significantly improved. The average bending capacity and the initial flexural stiffness of the stiffened specimens for the various shapes, single stiffener situations have increased of about 25% and 39%, respectively. These improvements went up to 45% and 60%, for the double stiffeners situations. Moreover, the bending capacity and the flexural stiffness values obtained from the experimental tests and FE analyses validated well with the values computed from equations of the existing standards.

Static bending response of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams

  • Ahmed Amine Daikh;Ahmed Drai;Mohamed Ouejdi Belarbi;Mohammed Sid Ahmed Houari;Benoumer Aour;Mohamed A. Eltaher;Norhan A. Mohamed
    • Advances in nano research
    • /
    • 제16권3호
    • /
    • pp.289-301
    • /
    • 2024
  • In this work, an analytical model employing a new higher-order shear deformation beam theory is utilized to investigate the bending behavior of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams. A modified continuum nonlocal strain gradient theory is employed to incorporate both microstructural effects and geometric nano-scale length scales. The extended rule of mixture, along with molecular dynamics simulations, is used to assess the equivalent mechanical properties of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beams. Carbon nanotube reinforcements are randomly distributed axially along the length of the beam. The equilibrium equations, accompanied by nonclassical boundary conditions, are formulated, and Navier's procedure is used to solve the resulting differential equation, yielding the response of the nanobeam under various mechanical loadings, including uniform, linear, and sinusoidal loads. Numerical analysis is conducted to examine the influence of inhomogeneity parameters, geometric parameters, types of loading, as well as nonlocal and length scale parameters on the deflections and stresses of axially functionally graded carbon nanotubes reinforced composite (AFG CNTRC) nanobeams. The results indicate that, in contrast to the nonlocal parameter, the beam stiffness is increased by both the CNTs volume fraction and the length-scale parameter. The presented model is applicable for designing and analyzing microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) constructed from carbon nanotubes reinforced composite nanobeams.

Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory

  • Mohammadimehr, Mehdi;Mehrabi, Mojtaba;Hadizadeh, Hasan;Hadizadeh, Hossein
    • Steel and Composite Structures
    • /
    • 제26권4호
    • /
    • pp.513-531
    • /
    • 2018
  • In this article, static, buckling and free vibration analyses of a sinusoidal micro composite beam reinforced by single-walled carbon nanotubes (SWCNTs) with considering temperature-dependent material properties embedded in an elastic medium in the presence of magnetic field under transverse uniform load are presented. This system is used at micro or sub micro scales to enhance the stiffness of micro composite structures such as bar, beam, plate and shell. In the present work, the size dependent effects based on surface stress effect and modified strain gradient theory (MSGT) are considered. The generalized rule of mixture is employed to predict temperature-dependent mechanical and thermal properties of micro composite beam. Then, the governing equations of motions are derived using Hamilton's principle and energy method. Numerical results are presented to investigate the influences of material length scale parameters, elastic foundation, composite fiber angle, magnetic intensity, temperature changes and carbon nanotubes volume fraction on the bending, buckling and free vibration behaviors of micro composite beam. There is a good agreement between the obtained results by this research and the literature results. The obtained results of this study demonstrate that the magnetic intensity, temperature changes, and two parameters elastic foundations have important effects on micro composite stiffness, while the magnetic field has greater effects on the bending, buckling and free vibration responses of micro composite beams. Moreover, it is shown that the effects of surface layers are important, and observed that the changes of carbon nanotubes volume fraction, beam length-to-thickness ratio and material length scale parameter have noticeable effects on the maximum deflection, critical buckling load and natural frequencies of micro composite beams.

터널 횡방향 지진해석 Part II: 동적해석을 통한 터널의 지진응답 예측 (Seismic Analysis of Tunnel in Transverse Direction Part II: Evaluation of Seismic Tunnel Response via Dynamic Analysis)

  • 박두희;신종호;윤세웅
    • 한국지반공학회논문집
    • /
    • 제26권6호
    • /
    • pp.71-85
    • /
    • 2010
  • 터널의 동적 지진해석은 실무에서 널리 수행되고 있다. 동적해석은 하부 및 측면 경계 조건, Deconvolution, 구성모형, 동적 물성치 등을 적용 또는 결정하기 어려워서 해석 수행 시 주의해야 하지만 이에 대한 명확한 가이드라인이 제시된 바 없다. 또한 많은 경우에는 터널의 동적해석 자체가 필요없지만 이에 대한 필요성과 정적해석과의 차이에 대한 이해 없이 무분별하게 사용되고 있는 실정이다. 본 논문에서는 일차적으로 2차원 동적 해석을 올바르게 수행하기 위한 가이드라인을 제시하였다. 이차적으로는 제시된 가이드라인을 준수한 2차원 동적해석을 수행하였으며 해석결과를 응답변위법을 비교하였다. 응답변위법과 동적해석을 비교한 결과, 두 해석기법간의 차이는 크지 않은 것으로 나타났다. 즉, 터널 갱구부, 초연약지반, 또는 공간적 변이성을 고려해야 하는 경우를 제외하고는 터널의 횡방향 지진해석은 응답변위법으로도 충분히 정확하게 터널의 응답을 예측할 수 있을 것으로 판단된다.

Free vibration analysis of sandwich cylindrical panel composed of graphene nanoplatelets reinforcement core integrated with Piezoelectric Face-sheets

  • Khashayar Arshadi;Mohammad Arefi
    • Steel and Composite Structures
    • /
    • 제50권1호
    • /
    • pp.63-75
    • /
    • 2024
  • In this paper, the modified couple stress theory (MCST) and first order shear deformation theory (FSDT) are employed to investigate the free vibration and bending analyses of a three-layered micro-shell sandwiched by piezoelectric layers subjected to an applied voltage and reinforced graphene nanoplatelets (GPLs) under external and internal pressure. The micro-shell is resting on an elastic foundation modeled as Pasternak model. The mixture's rule and Halpin-Tsai model are utilized to compute the effective mechanical properties. By applying Hamilton's principle, the motion equations and associated boundary conditions are derived. Static/ dynamic results are obtained using Navier's method. The results are validated with the previously published works. The numerical results are presented to study and discuss the influences of various parameters on the natural frequencies and deflection of the micro-shell, such as applied voltage, thickness of the piezoelectric layer to radius, length to radius ratio, volume fraction and various distribution pattern of the GPLs, thickness-to-length scale parameter, and foundation coefficients for the both external and internal pressure. The main novelty of this work is simultaneous effect of graphene nanoplatelets as reinforcement and piezoelectric layers on the bending and vibration characteristics of the sandwich micro shell.