• Title/Summary/Keyword: static behavior

Search Result 1,848, Processing Time 0.027 seconds

Comparison of Lateral Pile Behavior under Static and Dynamic Loading by Centrifuge Tests (원심모형 실험을 이용한 지반-말뚝 상호작용의 정적 및 동적 거동 평가)

  • Yoo, Min-Taek;Kwon, Sun-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.51-58
    • /
    • 2018
  • In this study a series of centrifuge tests were carried out in dry sand to analyze the comparison of lateral pile behavior for static loading and dynamic loading condition. In case of static loading condition, the lateral displacement was applied up to 50% of pile diameter by deflection control method. And the input sine wave of 0.1 g~0.4 g amplitude and 1 Hz frequency was applied at the base of the soil box using shaking table for dynamic loading condition. From comparison of experimental static p-y curve obtained from static loading tests with API p-y curves, API p-y curves can predict well within 20% error the ultimate subgrade reaction force of static loading condition. The ultimate subgrade reaction force of experimental dynamic p-y curve is 5 times larger than that of API p-y curves and experimental static p-y curves. Therefore, pseudo-static analysis applied to existing p-y curve for seismic design could greatly underestimate the soil resistance at non-linear domain and cause overly conservative design.

Static Behavio in Weak Axis of FRP Bridge Deck Filled With a Foam (폼 충전 FRP 바닥판의 약축방향 정적거동 특성)

  • Zi Goang-Seup;Kim Byeong-Min;Hwang Yoon-Koog;Lee Young-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.906-913
    • /
    • 2006
  • The failure mechanism of a hollow bridge deck which is made of glass fiber reinforced polymer(GFRP) is investigated using both experiments and analysis. While the load-displacement behavior of the deck in the transverse direction shows a strong nonlinearity even in its initial response with relatively small magnitude of loads. In order to imporve the structural behavior of the deck in the transverse direction, we suggested that the empty space of the bridge deck is filled with a foam and investigated experimentally the static behavior of the orthotropic bridge deck which is made from GFRP and polyurethane foam. It is found that although the elastic modulus of the foam compared to that of the GFRP is about the order of $10^{-3}$, the structural behaviors in the weak axis such as nominal strength, stiffness, etc. are greatly improved. Owing to the low mass density of the foam used in this study, the bridge deck is still light enough with the improved structural properties.

  • PDF

STATIC AND DYNAMIC BEHAVIOR OF HIGH-CURRENT RECTIFIER DIODES IN RESISTANCE WELDING INVERTER POWER SOURCES

  • Mecke, Hubert;Doebbelin, Reinhard;Fischer, Wolfgang
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.1003-1007
    • /
    • 1998
  • In recent years inverter power sources are more and more used for resistance welding processes. In this paper some results of investigation into the static and dynamic behavior of high-current rectifier diodes used in these inverter power sources will be discussed. By means of digital simulation, losses and efficiency have been determined depending on the power semiconductor parameters.

  • PDF

The Behavior of Axial Load Transfer for S.L. Coated Pile And Uncoated Pile (S.L. 도포 및 미도포 말뚝의 축하중전이거동)

  • 배기열;김정환;이민희;최용규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.373-380
    • /
    • 2002
  • In this study, In order to compare the behavior of axail load transfer for S.L. coated piles and uncoated piles installed at a field test site. During static pile load tests, axial load transfer for S.L. coated piles and uncoated piles were measured.

  • PDF

Static analysis of multiple graphene sheet systems in cylindrical bending and resting on an elastic medium

  • Wu, Chih-Ping;Lin, Chih-Chen
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.109-122
    • /
    • 2020
  • An asymptotic local plane strain elasticity theory is reformulated for the static analysis of a simply-supported, multiple graphene sheet system (MGSS) in cylindrical bending and resting on an elastic medium. The dimension of the MGSS in the y direction is considered to be much greater than those in the x and z directions, such that all the field variables are considered to be independent of the y coordinate. Eringen's nonlocal constitutive relations are used to account for the small length scale effects in the formulation examining the static behavior of the MGSS. The interaction between the MGSS and its surrounding foundation is modelled as a Winkler foundation with the parameter kw, and the interaction between adjacent graphene sheets (GSs) is considered using another Winkler model with the parameter cw. A parametric study with regard to some effects on the static behavior of the MGSS resting on an elastic medium is undertaken, such as the aspect ratio, the number of the GSs, the stiffness of the medium between the adjacent layers and that of the surrounding medium of the MGSS, and the nonlocal parameter.

The Static Performance Analysis of Foil Journal Bearings Considering Coulomb friction (마찰을 고려한 포일 저널베어링의 정특성 해석)

  • Kim, Kyung-Woong;Lee, Dong-Hyun;Kim, Young-Cheol
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.378-385
    • /
    • 2008
  • In foil bearings, the friction between bumps and their mating surfaces is the major factor which exerts great influence on the bearing performance. From this point of view, many efforts have been made to improve the understanding of the influence of the friction on the foil bearing performance by developing a number of analytical models. However, most of them did not consider the hysteretic behavior of the foil structure resulting from the friction. The present work developed the static structural model in which hysteretic behavior of the friction was considered. The foil structure was modeled using finite element method and the algorithm which determines the conditions of the contact nodes and the directions of the friction forces was used to take into account the friction. The developed model was integrated into the foil bearing prediction code to investigate the effects of the friction on the static performance of the bearing. The results of analysis show that multiple static equilibrium positions are presented for the one static load under the influence of the friction, inferring its great effects on the dynamic performance. However, the effect of friction on the minimum film thickness which determines load capacity of the bearing is negligible.

Vector form intrinsic finite-element analysis of static and dynamic behavior of deep-sea flexible pipe

  • Wu, Han;Zeng, Xiaohui;Xiao, Jianyu;Yu, Yang;Dai, Xin;Yu, Jianxing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.376-386
    • /
    • 2020
  • The aim of this study was to develop a new efficient strategy that uses the Vector form Intrinsic Finite-element (VFIFE) method to conduct the static and dynamic analyses of marine pipes. Nonlinear problems, such as large displacement, small strain, and contact and collision, can be analyzed using a unified calculation process in the VFIFE method according to the fundamental theories of point value description, path element, and reverse motion. This method enables analysis without the need to integrate the stiffness matrix of the structure, because only motion equations of particles established according to Newton's second law are required. These characteristics of the VFIFE facilitate the modeling and computation efficiencies in analyzing the nonlinear dynamic problem of flexible pipe with large deflections. In this study, a three-dimensional (3-D) dynamical model based on 3-D beam element was established according to the VFIFE method. The deep-sea flexible pipe was described by a set of spatial mass particles linked by 3-D beam element. The motion and configuration of the pipe are determined by these spatial particles. Based on this model, a simulation procedure to predict the 3-D dynamical behavior of flexible pipe was developed and verified. It was found that the spatial configuration and static internal force of the mining pipe can be obtained by calculating the stationary state of pipe motion. Using this simulation procedure, an analysis was conducted on the static and dynamic behaviors of the flexible mining pipe based on a 1000-m sea trial system. The results of the analysis proved that the VFIFE method can be efficiently applied to the static and dynamic analyses of marine pipes.

Experimental study on Static Behavior of H-beam prestressed with Multi-Stepwise TPSM (다단계 온도프리스트레싱 도입 강재보의 정적거동평가를 위한 실험적 연구)

  • An, Jin Hee;Jung, Chi Young;Kim, Jun Hwan;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.247-258
    • /
    • 2008
  • In this study, static loading tests were performed on H-beam specimens to assess the static behavior of H-beam prestressed with multi-stepwise thermal prestressing method (TPSM). The amount of induced thermal prestress and connection type were differentiated among the 400-mm-high and 6,000-mm-long H-beam specimens to evaluate their effect on the behavior of the beams. From the experimental results, it between the H-beam and the cover-plate increased in yielding load by 13~18%, whereas stiffness increased by 27~34%. In case of specimens with both bolting and welding connection, yie lding load increased by 18~29% and stiffness increased by 43~51%. Multi-stepwise initial stress distribution was also observed from the prestressed specimens, verifying the effectiveness of the multi-stepwise TPSM. By application of the multi-stepwise TPSM, a significant increase in yielding load and stiffness can be achieved, hence increasing sectional and prestressing efficiencies.

Deformation and Fracture Behavior of Structural Bulk Amorphous Metal under Quasi-Static Compressive Loading (준정적 압축하에서 구조용 벌크 아몰퍼스 금속의 변형 및 파괴거동)

  • Shin, Hyung-Seop;Ko, Dong-Kyun;Oh, Sang-Yeob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1630-1635
    • /
    • 2003
  • The deformation and fracture behaviors of a bulk amorphous metal, Zr-based one (Zr$\_$41.2/Ti$\_$13.8/Cu$\_$12.5/Ni$\_$10/Be$\_$22.5/: Vitreloy), were investigated over a strain rate range (7x10$\^$-4/~4 s$\^$-1/). The uniaxial compression test and the indentation test using 3mm-diameter WC balls were carried out under quasi-static loading conditions. As a result, at the uniaxial compressive state, the fracture stress of the material was very high (~1,700MPa) and the elastic strain limit was about 2%. The fracture strength showed a strain rate independent behavior up to 4 s$\^$-1/. Using indentation tests, the plastic deformation behavior of the Zr-based BAM up to a large strain value of 15% could be achieved, even though it was the deformation under locally constrained condition. The Meyer hardness of the Zr-based BAM measured by static indentation tests was about 5 GPa and it revealed negligible strain hardening behavior. At indented sites, the plastic indentation occurred forming a crater and well-developed multiple shear bands were generated around it along the direction of 45 degree when the indentation load exceeded 7kN. With increasing indentation load, shear bands became dense. The fracture surface of the specimen after uniaxial compressive tests showed vein-like pattern, typical morphology of many BAMs.

Crack Growth Behavior by Fatigue Load under Mixed Mode(I+II) (혼합모드(I+II)에서 피로 하중에 의한 균열진전 거동)

  • Gong, B.C.;Choi, S.D.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.276-282
    • /
    • 2012
  • This study looked for Mode status of each for fatigue crack growth behavior about the repeat load of mode I and the static load of mode II. The experiment was performed in the state of the repetition frequency of the sine wave 10Hz, the stress ratio 0.1, maximum load 300kg.f, a static load 0, 100, 200, 300kg.f, As the experimental results, in mode of static load, while the load value increases, the crack growth rate is slower as the energy of a crack mixing grows. Mode I and the power mode II get an influence each other in the direction of crack propagation path, but as they eventually get closer to the breaking point of the crack growth, it is dominated by the mode I.