• Title/Summary/Keyword: static approach

Search Result 914, Processing Time 0.026 seconds

Effects of Emoji Approach-Avoidance Visual Experience on Valence Ratings via Mobile Interface

  • Eojin Kim;Dahua Li;Soojin Jun
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.180-189
    • /
    • 2024
  • We aimed to see if approach-avoidance visual experience would have different effects in the valence rating of emojis. Previous literature has shown that approach-avoidance tendencies have influences people's emotional perceptions. Up until now, research on emojis have been heavily focused on static emojis, which gives room for exploration whether if movement added on to emoji would elicit different emotional responses. In the study, we examined the impact of approach-avoidance visual experience of emojis via mobile interface, categorized into 4 experimental conditions (positive approach, negative approach, positive avoid, and negative avoid), and conducted semi-structured interviews to identify users' reasonings towards their valence ratings on specific emojis with approach or avoid movements. We found that positive approach emojis were the highest valence rating and preferred by the participants, while there were no differences between negative emoji approach or avoidance. Based on these findings, we conclude that positive emojis could be intensified to be more positive with approach motion, yet for negative emojis, individual differences or contextual differences may arise in its emotional ratings.

Fixed-Order $H_{\infty}$ Controller Design for Descriptor Systems

  • Zhai, Guisheng;Yoshida, Masaharu;Koyama, Naoki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.898-902
    • /
    • 2003
  • For linear descriptor systems, we consider the $H_{INFTY}$ controller design problem via output feedback. Both static output feedback and dynamic one are discussed. First, in the case of static output feedback, we reduce our control problem to solving a bilinear matrix inequality (BMI) with respect to the controller coefficient matrix, a Lyapunov matrix and a matrix related to the descriptor matrix. Under a matching condition between the descriptor matrix and the measured output matrix (or the control input matrix), we propose setting the Lyapunov matrix in the BMI as being block diagonal appropriately so that the BMI is reduced to LMIs. For fixed-order dynamic $H_{INFTY}$ output feedback, we formulate the control problem equivalently as the one of static output feedback design, and thus the same approach can be applied.

  • PDF

Exploiting Static Non-Uniform Cache Architectures for Hard Real-Time Computing

  • Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.4
    • /
    • pp.177-189
    • /
    • 2015
  • High-performance processors using Non-Uniform Cache Architecture (NUCA) are increasingly used to deal with the growing wire delays in multicore/manycore processors. Due to the convergence of high-performance computing with embedded computing, NUCA caches are expected to benefit high-end embedded systems as well. However, for real-time systems that use multicore processors with NUCA caches, it is crucial to bound worst-case execution time (WCET) accurately and safely. In this paper, we developed a WCET analysis approach by considering the effect of static NUCA caches on WCET. We compared the WCET in real-time applications with different topologies of static NUCA caches. Our experimental results demonstrated that the static NUCA cache could improve the worst-case performance of realtime applications using multicore processor compared to the cache with uniform access time.

Simultaneous Stabilization Via Static Ouput Feedback Using an LMI Method (LMI를 이용한 정적출력궤환 동시안정화 제어기 설계)

  • Cheon, Jong-Min;Lee, Jong-Moo;Kwon, Soon-Man;Moon, Young-Hyun;Kim, Seog-Joo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.5
    • /
    • pp.226-228
    • /
    • 2006
  • This paper deals with a linear matrix inequality (LMI) approach to the design of a static output feedback controller that simultaneously stabilizes a finite collection of linear time-invariant plants. Simultaneous stabilization by static ouput feedback is represented in terms of LMIs with a rank condition. An iterative penalty method is proposed to solve the rank-constrained LMI problem. Numerical experiments show the effectiveness of the proposed algorithm.

Static forwardin: an approach to reduce data hazards in VLIW processor (정적 포워딩에 의한 VLIW 프로세서의 데이터 hazard 처리)

  • 박형준;김이섭
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.2
    • /
    • pp.1-9
    • /
    • 1998
  • To achieve high performance in VLIW processors, they must exploit the parallelism on application programs. Data dependency makes it difficult to find the instruction-level parallelism. Among the three kinds of data dependency, true dependency causes RAW(Read After Wirte) hazards that occur most frequently in VILW processors. Forwarding is a widely used technique to reduce the performance degradation caused by RAW hazards. However, forwarding requires too much area of the chip when it is applied to VLIW processors. In this paper, static forwarding is proposed to reduce the hardware cost of forwarding circuits. It needs an extended compiler to detect RAW hazards and control the proposed forwarding scheme via instruction. And it uses the modified register file to shrink the area of forwarding path. VLIW Processor Model is also designed to verify static forwarding. This paper describes the operation of static forwarding and the comparison with the conventional forwarding.

  • PDF

Damage assessment of linear structures by a static approach, I: Theory and formulation

  • Tseng, Shih-Shong
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.181-193
    • /
    • 2000
  • The objective of this research is to propose a new global damage detection parameter, termed as the static defect energy (SDE). This candidate parameter possesses the ability to detect, locate and quantify structural damage. To have a full understanding about this parameter and its applications, the scope of work can be divided into several tasks: theory and formulation, numerical simulation studies, experimental verification and feasibility studies. This paper only deals with the first part of the task. Brief introduction will be given to the dynamic defect energy (DDE) after systematically reviewing the previous works. Process of applying the perturbation method to the oscillatory system to obtain a static expression will be followed. Two implementation methods can be used to obtain SDE equations and the diagrams. Both results are equally good for damage detection.

A Practical Estimation of Static Stability of a Hovercraft

  • Park, Sun-Ho;Heo, Jae-Kyung;Yu, Byeong-Seok
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.3
    • /
    • pp.27-35
    • /
    • 2006
  • The static stability of a high-speed hovercraft is estimated by model tests, simplified restoring moment equations and CFD. Well-known methods to increase the stability of hovercrafts are introduced. Roll and pitch moments of a scaled model with a skirt system are measured over inclination angles. The tests are performed on cushion at zero speed both on-land and over-water. To predict the static stability performance, simple restoring moment equations and CFD approach are introduced. Both shows a quantitative difference from the model test results, however, could be used as a design tool for relative comparison prior to model tests.

Comparison of Effects on Static Balance in Stroke Patients According to Visual Biofeedback Methods

  • Kyu-Seong Choi;Il-Ho Kwon;Won-Seob Shin
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.3
    • /
    • pp.320-326
    • /
    • 2023
  • Objective: The purpose of this study is to investigate the impact of visual biofeedback methods utilizing pressure sensors on the static balance of stroke patients. Design: Randomized crossover study. Methods: A total of 27 patients with hemiparesis participated in this study. The following three feedback conditions were considered: condition 1 (Knowledge of performance feedback), condition 2 (Knowledge of result feedback), and condition 3 (None feedback). A force plate was used to measure static balance. The total sway length, average sway velocity, x-axis excursion, and y-axis excursion of the center of pressure were measured. One-way repeated-measures analysis of variance was employed for comparisons of variables between each condition. The statistical significance level was set at α = 0.05 for all analyses. Results: There was a significant difference in the static balance results between each feedback condition (p<0.05). In the post-hoc results, it was confirmed that the static balance was significant in the order of knowledge of performance feedback, knowledge of result feedback, and none feedback. Conclusions: When comparing the three conditions, it was observed that knowledge of performance feedback showed the most improved effect on static balance ability. As further research progresses, that this approach could be used as an effective intervention method in clinical settings.

Higher order static analysis of truncated conical sandwich panels with flexible cores

  • Fard, Keramat Malekzadeh
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1333-1354
    • /
    • 2015
  • A higher order analytical solution for static analysis of a truncated conical composite sandwich panel subjected to different loading conditions was presented in this paper which was based on a new improved higher order sandwich panel theory. Bending analysis of sandwich structures with flexible cores subjected to concentrated load, uniform distributed load on a patch, harmonic and uniform distributed loads on the top and/or bottom face sheet of the sandwich structure was also investigated. For the first time, bending analysis of truncated conical composite sandwich panels with flexible cores was performed. The governing equations were derived by principle of minimum potential energy. The first order shear deformation theory was used for the composite face sheets and for the core while assuming a polynomial description of the displacement fields. Also, the in-plane hoop stresses of the core were considered. In order to assure accuracy of the present formulations, convergence of the results was examined. Effects of types of boundary conditions, types of applied loads, conical angles and fiber angles on bending analysis of truncated conical composite sandwich panels were studied. As, there is no research on higher order bending analysis of conical sandwich panels with flexible cores, the results were validated by ABAQUS FE code. The present approach can be linked with the standard optimization programs and it can be used in the iteration process of the structural optimization. The proposed approach facilitates investigation of the effect of physical and geometrical parameters on the bending response of sandwich composite structures.

A critical study on best methodology to perform UQ for RIA transients and application to SPERT-III experiments

  • Dokhane, A.;Vasiliev, A.;Hursin, M.;Rochman, D.;Ferroukhi, H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1804-1812
    • /
    • 2022
  • The aim of this paper is to assess the reliability and accuracy of the PSI standard method, used in many previous works, for the quantification of ND uncertainties in the SPERT-III RIA transient, by quantifying the discrepancy between the actual inserted reactivity and the original static reactivity worth and their associated uncertainties. The assessment has shown that the inherent S3K neutron source renormalization scheme, introduced before starting the transient, alters the original static reactivity worth of the transient CR and reduces the associated uncertainty due to the ND perturbation. In order to overcome these limitations, two additional methods have been developed based on CR adjustment. The comparative study performed between the three methods has showed clearly the high sensitivity of the obtained results to the selected approach and pointed out the importance of using the right procedure in order to simulate correctly the effect of ND uncertainties on the overall parameters in a RIA transient. This study has proven that the approach that allows matching the original static reactivity worth and starting the transient from criticality is the most reliable method since it conservatively preserves the effect of the ND uncertainties on the inserted reactivity during a RIA transient.