• 제목/요약/키워드: static and fatigue load tests

검색결과 87건 처리시간 0.031초

Behavior of Laterally Damaged Prestressed Concrete Bridge Girders Repaired with CFRP Laminates Under Static and Fatigue Loading

  • ElSafty, Adel;Graeff, Matthew K.;Fallaha, Sam
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권1호
    • /
    • pp.43-59
    • /
    • 2014
  • Many bridges are subject to lateral damage for their girders due to impact by over-height vehicles collision. In this study, the optimum configurations of carbon fiber reinforced polymers (CFRP) laminates were investigated to repair the laterally damaged prestressed concrete (PS) bridge girders. Experimental and analytical investigations were conducted to study the flexural behavior of 13 half-scale AASHTO type II PS girders under both static and fatigue loading. Lateral impact damage due to vehicle collision was simulated by sawing through the concrete of the bottom flange and slicing through one of the prestressing strands. The damaged concrete was repaired and CFRP systems (longitudinal soffit laminates and evenly spaced transverse U-wraps) were applied to restore the original flexural capacity and mitigate debonding of soffit CFRP longitudinal laminates. In addition to the static load tests for ten girders, three more girders were tested under fatigue loading cycles to investigate the behavior under simulated traffic conditions. Measurements of the applied load, the deflection at five different locations, strains along the cross-section height at mid-span, and multiple strains longitudinally along the bottom soffit were recorded. The study investigated and recommended the proper CFRP repair design in terms of the CFRP longitudinal layers and U-wrapping spacing to obtain flexural capacity improvement and desired failure modes for the repaired girders. Test results showed that with proper detailing, CFRP systems can be designed to restore the lost flexural capacity, sustain the fatigue load cycles, and maintain the desired failure mode.

탄소섬유시트로 보강된 RC 보의 피로내구성 향상에 관한 연구 (Improvement in Fatigue Durability of RC Beams Strengthened with Carbon Fiber Sheets)

  • 박정용;김성도;조백순;김인태;정진환
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권6호
    • /
    • pp.205-212
    • /
    • 2006
  • 최근 연구들은 특별한 정착장치 없이 실험보 하면을 CFS로 보강한 RC보에 반복하중이 작용하면 보강재 단부 접착계면이 피로파괴 된다고 보고하였다. 본 연구에서는 접착계면의 피로파괴를 지연 또는 방지시켜 피로내구성을 향상시키기 위해 단부측에 U형 밴드를 보강한 후 최대 100만회 피로실험을 실시하였다. 보강보 종류는 CFS를 하면 보강한 1겹 무밴드, 하면 및 단부를 U형 밴드로 보강한 1겹 U밴드와 3겹 U밴드가 있다. 실험변수들로는 단부의 U형 밴드 유무, CFS의 겹수, 정적실험으로부터 구한 정적 최대하중의 60%~90%의 재하하중 범위 등이 있다. 실험결과를 이용하여 파괴모드, 반복횟수-처짐 관계를 비교 분석하였다. 실험 결과에 의하면 단부의 U형 밴드는 접착계면의 부착파괴를 방지하고 콘크리트 모체와 CFS를 일체거동하게 하며, 피로강도 증가에 상당한 효과가 있음을 확인할 수 있었다.

변동하중하에 용접대차프레임의 정적 피로해석 (Static Fatigue Analysis of Welding Bogie Frame Under Variable Amplitude Loading)

  • 김철수;강주석;안승호;정광우;전영석;박춘수;김상수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.421-426
    • /
    • 2009
  • Recently, the design process for a railway bogie frame in Europe has been carried out according to the norm EN 13749. The activities in the norm EN shall demonstrate that the design of the bogie frame fulfills the acceptances of 4 steps of the program such as structural calculation, static tests, fatigue test and on-tracks tests. At the end of the acceptance program, the on-tracks tests have the aim to measure the real stress history generated in operation and to verify that they are reasonably next to those calculated and measured on the test rig. Therefore, in order to assure the safety of the railway vehicle, it is important to examined the durability of that under load histories measured from on-tracks tests. In this study, under variable amplitude loading based on the actual acceleration history, fatigue analysis of the welding bogie frame is investigated by using durability software. Moreover, the fatigue life of the frame under the loading in the norm EN fatigue test condition is evaluated and compared with the life under variable amplitude loading.

  • PDF

Structural behavior of precast concrete deck with ribbed loop joints in a composite bridge

  • Shin, Dong-Ho;Chung, Chul-Hun;Oh, Hyun-Chul;Park, Se-Jin;Kim, In-Gyu;Kim, Young-Jin;Byun, Tae-Kwan;Kang, Myoung-Gu
    • Smart Structures and Systems
    • /
    • 제17권4호
    • /
    • pp.559-576
    • /
    • 2016
  • This study is intended to propose a precast bridge deck system, which has ribbed loop joints between the decks and lacks internal tendons to improve the workability of existing precast deck system. A composite bridge deck specimen was fabricated using the proposed precast deck system, and static and fatigue load tests were conducted to evaluate the structural behavior and the crack pattern of the deck. Leakage test of the deck joints was also conducted and finite element analysis was carried out to compare with the test results.

내화패널이 부착된 프리캐스트 PSC 풍도슬래브의 정적/동적하중에 관한 실험연구 (Experimental Studies on PSC Airpit-Slab with Fire Resistance Panel under Static and Dynamic Loads)

  • 김태균;배정;최헌;민인기
    • 대한토목학회논문집
    • /
    • 제32권4A호
    • /
    • pp.245-253
    • /
    • 2012
  • 본 연구에서는 장대터널이나 지하차도 등에 시공되는 횡류식 환기시스템을 구성하는 내화패널이 부착된 프리캐스트 풍도슬래브의 구조성능을 평가하기 위해서 실물모형 구조실험을 수행하였다. 또한, 내화패널의 휨강도와 Pull-off test를 통하여 내화패널과 슬래브의 부착성능 등의 기초성능을 우선적으로 확인하였다. 실물모형시험은 내화패널과 프리캐스트 PSC 슬래브의 정적 휨성능과 차량의 통행 시 발생하는 표면압력 이상의 하중에 대한 동적피로부착성능을 평가하였다. 동적피로하중 시험에서 내화패널과 PSC 슬래브 사이의 탈락이나 손상은 발생하지 않았으며, 정적재하시험에서도 매우 안정적인 거동을 보였으며, 하부에 부착된 내화패널의 탈락은 발생하지 않았다. 따라서 시공 중이나 시공 후 외부하중에 의해 내화패널의 탈락은 발생하지 않을 것으로 판단된다.

노치를 가진 강섬유 보강 고강도 콘크리트 보의 휨 피로거동에 관한 실험적 연구 (An Experimental Study on the Flexural Fatigue Behavior of Steel Fiber Reinforced High Strength Concretes Beams with Single Edged Notch)

  • 구봉근;김태봉;김흥룡
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.120-125
    • /
    • 1992
  • The fatigue tests were performed on the high strength concrete beams with single edged notch which was reinforced steel fiber. The steel fibers were used 1.0 percent by volume fraction. These were tested consists of constant amplitude tests for different levels of loading. The test program included endurance limit with repect to flexural fatigue and relation of load-CMOD(crack mouth opening displacement). The results of test, it is found from S-N curve that the fatigue strength for a life of 2 million cycles of load was approximately 70percent with respect to the static ultimate strength .

  • PDF

셀프 피어싱 리베팅한 Al-5052 접합부의 피로강도 평가 (Fatigue Strength Evaluation of Self-Piercing Riveted Al-5052 Joints)

  • 강세형;황재현;김호경
    • 한국안전학회지
    • /
    • 제30권3호
    • /
    • pp.1-6
    • /
    • 2015
  • Self-piercing riveting (SPR) is receiving more recognition as a possible and effective solution for joining automotive body panels and structures, particularly for aluminum parts and dissimilar parts. In this study, static strength and fatigue tests were conducted using coach-peel and cross-tension specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. For the static experiment results, the fracture modes are classified into pull-out fracture due to influence of plastic deformation of joining area. During the fatigue tests for the coach-peel and cross-tension specimens with Al-5052, interface failure mode occurred on the top substrate close to the rivet head in the most cycle region. There were relationship between applied load amplitude $P_{amp}$ and life time of cycle N, $P_{amp}=715.5{\times}N^{-0.166}$ and $P_{amp}=1967.3{\times}N^{-0.162}$ were for the coach-peel and cross- tension specimens, respectively. The finite element analysis results for specimens were adopted for the parameters of fatigue lifetime prediction. The relation between SWT fatigue parameter and number of cycles was found to be $SWT=192.8N_f^{-0.44}$.

단분절 척추경 나사못의 피로수명과 Pre-Load의 영향 (The effect of pre-load and fatigue life for one-level pedicle screw system)

  • 김병일;이효재;송정일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1298-1301
    • /
    • 2003
  • The purpose of this research is to evaluate the effect of pre-load and fatigue life of the distracted one-level pedicle screw system. A spring, which acted as a substitute of the ligament, was installed in the one-level pedicle screw system before testing. The static and fatigue properties are now being tested, which includes 6mm rod to 6mm screw, 6mm rod to 6.5mm screw and 6.35mm rod to 6.5mm screw, under pre-load. Until now as test data were analyzed, 6mm rod to 6.5mm screw was found to have the best performances of stillness and fatigue lift, while 6mm rod to 6mm screw showed the shortest fatigue life. If the stiffness of screw was bigger than that of rod. the fatigue life was prolonged. The fatigue life of the distracted pedicle screw was proved to be shorter than that of the one-level pedicle screw system. So the fatigue life was shortened because of the effect of the spring on the flexibility and stiffness of the rod. In order to obtain the stability of the pedicle screw, more tests are under doing on this topic.

  • PDF

Comparison of the Fatigue Behaviors of FRP Bridge Decks and Reinforced Concrete Conventional Decks Under Extreme Environmental Conditions

  • Kwon, Soon-Chul;Piyush K. Dutta;Kim, Yun-Hae;Anido, Roberto-Lopez
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2003
  • This paper summarizes the results of the fatigue test of four composite bridge decks in extreme temperatures (-30$^{\circ}C$ and 50$^{\circ}C$ ). The work was performed as part of a research program to evaluate and install multiple FRP bridge deck systems in Dayton, Ohio. A two-span continuous concrete deck was also built on three steel girders for the benchmark tests. Simulated wheel loads were applied simultaneously at two points by two servo-controlled hydraulic actuators specially designed and fabricated to perform under extreme temperatures. Each deck was initially subjected to one million wheel load cycles at low temperature and another one million cycles at high temperature. The results presented in this paper correspond to the fatigue response of each deck for four million load cycles at low temperature and another four million cycles at high temperature. Thus, the deck was subjected to a total of ten million cycles. Quasi-static load-deflection and load-strain responses were determined at predetermined fatigue cycle levels. Except for the progressive reduction in stiffness, no significant distress was observed in any of the composite deck prototypes during ten million load cycles. The effects of extreme temperatures and accumulated load cycles on the load-deflection and load-strain response of FRP composite and FRP-concrete hybrid bridge decks are discussed based on the experimental results.

MPV 프레임의 피로수명 예측 (Fatigue Life Prediction of a Multi-Purpose Vehicle Frame)

  • 천인범;조규종
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.146-152
    • /
    • 1998
  • Recently, for the development of vehicle structures and components there is a tendency to increase using numerical simulation methods compared with practical tests for the estimation of the fatigue strength. In this study, an integrated powerful methodology is suggested for fatigue strength evaluation through development of the interface program to integrate dynamic analysis quasi-static stress analysis and fatigue analysis, which were so far used independently. To verify the presented evaluation method, a single and zigzag bump run test, 4-post road load simulation and driving durability test have been performed. The prediction results show a good agreement between analysis and test. This research indicates that the integrated life prediction methodology can be used as a reliable design tool in the pre-prototype and prototype development stage, to reduce the expense and time of design iteration.

  • PDF