• Title/Summary/Keyword: static MOE

Search Result 45, Processing Time 0.025 seconds

A Comparative Study on the Mechanical Properties of Plywood treated with Several Fire-Retardant Chemicals(II) - Effect of Platen Temperature in Press Drying on the Static Bending Strength of Treated Plywood - (수종(樹種) 내화약제(耐火藥劑)로 처리(處理)된 합판(處理)의 기술적(技術的) 성질(性質)에 관(關)한 비교연구(比較硏究)(II) - 열판건조시(熱板乾燥時) 열판온도(熱板溫度)가 처리합판(處理合板)의 휨강도(强度)에 미치는 영향(影響) -)

  • Chung, Woo-Yang;Kim, Jong-Man;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.12-18
    • /
    • 1984
  • Soaking treated in 20% aqueous solutions of $(NH_4)_2SO_4$, $NH_4H_2PO_4$, $(NH_4)_2HPO_4$, $Na_2B_4O_7-H_3BO_3$(60:40) and Minalith, the mixed salts for 9 hrs. the wet 3.5mm meranti (Parashorea spp.) plywoods were press-dried at 90, 120 and $150^{\circ}C$ and put to static bending test to examine the influence of redrying temperature on the strength of fire-retardant treated plywoods ill flexure. While water-soaking treatment (control) showed serious reduction in Stress at proportional limit, MOE, MOR, Work per unit volume at $150^{\circ}C$, all the fire-retardant treatments maintained bending strength even at $150^{\circ}C$ and showed rather increased values in case of some chemicals. In view of drying rate and maintenance of strength, the most pertinent platen temperature was $150^{\circ}C$ and Borax-Boric acid was the predominant fire-retardant in this study.

  • PDF

A Dynamic QoS Adjustment Enabled and Load-balancing-aware Service Composition Method for Multiple Requests

  • Wu, Xiaozhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.891-910
    • /
    • 2021
  • Previous QoS-aware service composition methods mainly focus on how to generate composite service with the optimal QoS efficiently for a single request. However, in the real application scenarios, there are multiple service requests and multiple service providers. It is more important to compose services with suboptimal QoS and maintain the load balance between services. To solve this problem, in this paper, we propose a service composition method, named as dynamically change and balancing composition method (DCBC). It assumes that the QoS of service is not static, and the services can adjust the value of QoS to gain more opportunities to be selected for composition. The method mainly includes two steps, which are the preprocessing step and the service selection step. In the preprocessing step, a backward global best QoS calculation is performed which regarding the static and dynamic QoS respectively; then guided by the global QoS, the feasible services can be selected efficiently in the service selection step. The experiments show that the DCBC method can not only improve the overall quality of composite services but also guarantee the fulfill ratio of requests and the load balance of services.

Experimental study on the fatigue performance of aluminum foam sandwich with 304 stainless steel face-sheet

  • Yan, Chang;Jing, Chuanhe;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.229-241
    • /
    • 2021
  • This work focused on aluminum foam sandwich (AFS) with different foam core densities and different face-sheet thicknesses subjected to constant amplitude three-point bending cyclic loading to study its fatigue performance. The experiments were conducted out by a high frequency fatigue test machine named GPS-100. The experimental results showed that the fatigue life of AFS decreased with the increasing loading level and the structure was sensitive to cyclic loading, especially when the loading level was under 20%. S-N curves of nine groups of AFS specimens were obtained and the fatigue life of AFS followed three-parameter lognormal distribution well. AFS under low cyclic loading showed pronounced cyclic hardening and the static strength after fatigue test increased. For the same loading level, effects of foam core density and face-sheet thickness on the fatigue life of AFS structure were trade-off and for the same loading value, the fatigue life of AFS increased with aluminum foam core density or face-sheet thickness monotonously. Core shear was the main failure mode in the present study.

Static Bending Performances of Cross-Laminated Wood Panels Made with Tropical and Temperate Woods

  • Byeon, Jin-Woong;Kim, Tae-Ho;Yang, Jae-Kyung;Byeon, Hee-Seop;Park, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.726-734
    • /
    • 2018
  • In this study, for using effectively domestic (temperate) small and medium diameter logs as a wooden floorboard, cross-laminated wood panels were manufactured using domestic larch and tulip woods as a base material for teak and merbau wood flooring, and static bending strength performances were measured to investigate the applicability as the base materials of wooden flooring in place of plywood. Static bending MOE was much influenced by the strength performances of the top layer lamina than that of the laminae for base materials. Bending MOR showed the higher values in tulip wood that was hardwoods than in larch wood that was softwoods regardless of the strength performances of the top layer laminae, and it was found that the values were much influenced by the strength performances of the base materials used in the core and bottom layers. However these values were 1.4-2.5 times higher values than the bending strength of the wooden floorboards specified in KS, it was found that it can be sufficiently applied to the base materials of wooden floorboards in place of plywood.

Effectiveness Analysis for Survival Probability of a Surface Warship Considering Static and Mobile Decoys (부유식 및 자항식 기만기의 혼합 운용을 고려한 수상함의 생존율에 대한 효과도 분석)

  • Shin, MyoungIn;Cho, Hyunjin;Lee, Jinho;Lim, Jun-Seok;Lee, Seokjin;Kim, Wan-Jin;Kim, Woo Shik;Hong, Wooyoung
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.53-63
    • /
    • 2016
  • We consider simulation study combining static and mobile decoys for survivability of a surface warship against torpedo attack. It is assumed that an enemy torpedo is a passive acoustic homing torpedo and detects a target within its maximum target detection range and search beam angle by computing signal excess via passive sonar equation, and a warship conducts an evasive maneuvering with deploying static and mobile decoys simultaneously to counteract a torpedo attack. Suggesting the four different decoy deployment plans to achieve the best plan, we analyze an effectiveness for a warship's survival probability through Monte Carlo simulation, given a certain experimental environment. Furthermore, changing the speed and the source level of decoys, the maximum torpedo detection range of warship, and the maximum target detection range of torpedo, we observe the corresponding survival probabilities, which can provide the operational capabilities of an underwater defense system.

Differences of Physical, Mechanical and Chemical Properties of Korean Red Pine(Pinus densiflora) Between Old and New Wood (소나무 고목재와 건전재의 물리, 기계, 화학적 특성 차이)

  • Shim, Kug-Bo;Lee, Do-Sik;Park, Byung-Soo;Cho, Sung-Taig;Kim, Kwang-Mo;Yeo, Hwan-Myeong
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The physical, mechanical and chemical properties of old and new Korean red pine (Pinus densiflora) were analyzed. The old woods were from dismantled timbers of Bonjungsa temple. The crystallized resin in the latewood was observed by microscopic analysis. Also, reduction of specific gravity, occurrence of microscopic cleavage of tracheid was observed in the old wood. The angle of microscopic cleavage of tracheid is estimated with the same angle of micro-fibril angle of 52 layer. The bending, compression and shear strength of old world were decreased about 35-27% than those of new wood. Dynamic modulus of elasticity measured by ultrasonic nondestructive test has the tendency of reducing by the time elapse of the wood usage. Therefore, deterioration of wood could be measured by reduction of specific gravity and dynamic MOE. The static MOE and mechanical properties of old wood could be predictable by measuring dynamic MOE in the longitudinal direction. Extractives of the old wood in 1-% NaOH solution are larger quantity than new wood. Therefore the decay of the wood could be evaluated by analyzing the chemical compound, especially 1-% NaOH solution. The results of this research could be used for understanding and prediction of the changing properties with elapsing time of wood.

  • PDF

Static Bending Strength Performances of Hybrid Laminated Woods Composed of Wood-Wood Based Boards (목재와 목질보드 복합적층재의 휨강도성능)

  • Park, Han-Min;Moon, Sung-Jae;Choi, Yoon-Eun;Park, Jung-Hwan;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.546-555
    • /
    • 2009
  • To study an effective use of woods, three-ply hybrid laminated woods instead of crosslaminated woods which are composed of spruce in the face and three kinds of wood-based boards (MDF, PB, OSB) in the core were manufactured, and the effect of constitution elements for the core laminae on bending strength performances was investigated. Bending modulus of elasticity (MOE) of hybrid laminated woods had the highest values for the hybrid laminated wood types arranging OSB laminae in the core, and had the lowest values for those arranging MDF laminae in the core. These values were higher than those of various cross-laminated woods. The estimated bending MOEs of the hybrid laminated woods which were composed of perpendicular-direction lamina of spruce in the faces were similar to their measured values, regardless of wood-based boards in the core. However, those of the hybrid laminated woods which were composed of parallel-direction lamina of spruce in the faces had much higher values than those of their measured values, and it was necessary to revise the measured values. Bending modulus of rupture (MOR) of the hybird laminated woods had the highest value for those arranging OSB laminae in the core, and had the lowest values for those arranging PB laminae in the core unlike the bending MOE. By hybrid laminating, the anisotropy of bending strength performances was markedly decreased, and the differences of strength performances among wood-based boards were also considerably decreased.

Effect of Annual Ring Angles on Static Bending Strength Performances of Cross-Laminated Woods Made with Spruce (연륜경사각이 가문비나무 직교형적층재의 정적 휨 강도성능에 미치는 영향)

  • Sung, Eun-Jong;Kwon, Chang-Bae;Ryu, Hyun-Soo;Byeon, Hee-Seop;Park, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.290-300
    • /
    • 2014
  • In this study, cross-laminated woods were made with spruce wood and the effects of annual ring angles of perpendicular direction laminae on static bending strength performance were investigated. Static bending strength performances of parallel laminated woods with all layers composed of laminae perpendicular to the grain ($P_{\bot}$ type) were in the order of $90^{\circ}$ > $0^{\circ}$ > $45^{\circ}$. The MOE and MOR for the $45^{\circ}$ annual ring angle were 0.0989 GPa and 3.25 MPa, and it showed the lowest values. By placing longitudinal-direction laminae in the core of $P_{\bot}$ type, the strength performances were markedly improved. In the case of cross-laminated woods with perpendicular-direction laminae in the faces ($C_{\bot}$ type), the bending strength performances were in the order of $90^{\circ}$ > $0^{\circ}$ > $45^{\circ}$, but the differences among annual ring angles were less than those of the parallel-laminated woods. In the case of cross-laminated woods with perpendicular-direction laminae in the core ($C_{\parallel}$ type), the bending strength performances were in the order of $45^{\circ}$ > $90^{\circ}$ > $0^{\circ}$ unlike $P_{\bot}$ type and $C_{\bot}$ type. The MOE and MOR for the $45^{\circ}$ annual ring angle were 12.0 GPa and 55.8 MPa, and it showed the highest values.

Effect of the Kind and Content of Raw Materials on Dynamic Modulus of Elasticity of Hybrid Composite Boards Composed of Green Tea, Charcoals and Wood Fiber (녹차-숯-목재섬유 복합보드의 동적탄성률에 미치는 구성원료의 종류 및 배합비율의 영향)

  • Park, Han-Min;Heo, Hwang-Sun;Sung, Eun-Jong;Nam, Kyeong-Hwan;Lim, Jae-Seop;Byeon, Hee-Seop
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.75-86
    • /
    • 2012
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea, 3 kinds of charcoals and wood fiber for developing interior materials to reinforce the strength performances and the functionalities in addition to performances of the hybrid composite boards composed of green tea and wood fiber. The effects for the kind and the component ratio of raw materials on dynamic MOE (modulus of elasticity) were investigated, and static bending strength performances were nondestructively estimated. Dynamic MOEs were highest in the hybrid composite boards composed of green tea, fine charcoal and wood fiber on the whole. However, the difference caused by the kind of charcoals was small. These values decreased with increasing component ratios of green tea and charcoals. The hybrid composite boards using $E_1$ grade urea resin had the higher values than those using $E_0$ grade urea resin, however the difference between them markedly decreased than that of hybrid composite board composed of green tea and wood fiber, and it was found that these values were markedly improved than those of the hybrid composite boards composed of green tea and wood fiber. There were mostly high correlations with significance at 1% level between dynamic MOEs and static bending strength performances, and this means that the static bending strength performances can be estimated from dynamic MOE.

Effect of Green Tea Content on Static Bending Strength Performance of Hybrid Boards Composed of Green Tea and Wood Fibers (녹차-목재섬유복합보드의 정적 휨 강도성능에 미치는 녹차배합비율의 영향)

  • Park, Han-Min;Kang, Dong-Hyun;Lim, Na-Rea;Lee, Soo-Kyeong;Jung, Kang-Won;Kim, Jong-Chul;Cho, Kyeong-Hwan
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.1-8
    • /
    • 2010
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea and wood fibers for application as interior materials with various functionalities of green tea and strong strength properties of wood fibers. In this relation, the effect of green tea content on the static bending strength performances of these green tea and wood fibers composite boards were investigated. Static bending strengths of hybrid composite boards were lower than those of control boards and decreased with the increase of green tea content. Also, the strength performances appeared to be somewhat different by resin type used for board manufacture. The hybrid composite boards manufactured from $E_1$ grade urea resin adhesive, which has higher molar ratio of formaldehyde to urea than that of $E_0$ grade one, were 1.08~1.53 times higher in bending modulus of elasticity (MOE) and 1.19~1.82 higher in modulus of rupture (MOR) than that manufactured from $E_0$ grade. And, the differences of MOE and MOR between hybrid composite boards manufactured from $E_0$ grade and $E_0$ grade urea resin adhesive increased with the increase of green tea content. In the case of hybrid composite boards manufactured from $E_1$ grade urea resin adhesive, the MOR was within 0.94~1.03 times the commercial medium density fiberboard. Thus, it was thought that eco-friendly hybrid composite boards with various functionalities and strong strength performances could be manufactured from green tea and wood fibers.