
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, Mar. 2021 891

Copyright ⓒ 2021 KSII

This research was supported by Key Science and Technology Plan Projects of Fujian Province (2015H0015),

Education and Technology Plan Projects of Fujian Province (JAT160088), and Foundation of China Scholarship

Council (201706655035).

http://doi.org/10.3837/tiis.2021.03.005 ISSN : 1976-7277

A Dynamic QoS Adjustment Enabled and
Load-balancing-aware Service

Composition Method for Multiple Requests

Xiaozhu Wu*
 College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China

 Key Lab of Spatial Data Mining & Information Sharing, MOE, Fuzhou University, Fuzhou 350108, China

[e-mail: wxz@fzu.edu.cn]
*Corresponding author: Xiaozhu Wu

Received October 26, 2020; revised December 15, 2020; accepted February 11, 2021;

 published March 31, 2021

Abstract

Previous QoS-aware service composition methods mainly focus on how to generate composite

service with the optimal QoS efficiently for a single request. However, in the real application

scenarios, there are multiple service requests and multiple service providers. It is more

important to compose services with suboptimal QoS and maintain the load balance between

services. To solve this problem, in this paper, we propose a service composition method,

named as dynamically change and balancing composition method (DCBC). It assumes that the

QoS of service is not static, and the services can adjust the value of QoS to gain more

opportunities to be selected for composition. The method mainly includes two steps, which

are the preprocessing step and the service selection step. In the preprocessing step, a backward

global best QoS calculation is performed which regarding the static and dynamic QoS

respectively; then guided by the global QoS, the feasible services can be selected efficiently

in the service selection step. The experiments show that the DCBC method can not only

improve the overall quality of composite services but also guarantee the fulfill ratio of requests

and the load balance of services.

Keywords: Dynamic QoS, Load Balance, Service Composition, QoS Adjustment

892 Wu: A Dynamic QoS Adjustment Enabled and Load-balancing-aware Service
Composition Method for Multiple Requests

1. Introduction

Web service is a widely used technology to enable business cooperation nowadays [1].

Many enterprises have published a lot of web services to seek new business opportunities,

such as Google, Facebook and Amazon, which could be found in the online web service

repository [2]. The web service resources provide the potential to integrate two or more

services to fulfill the user’s complicate requirement. Service composition also is a promising

technology to realize the business integration. Service composition algorithms try to select

appropriate services to form a service chain or workflow so as to satisfy the user’s functional

and non-functional constraints [3].

The QoS-aware web service composition is one of the most popular research topics in the

field of service computing [4-8]. The QoS attributes usually refer to the non-functional

characteristics of web service, such as availability, reliability, response time and cost. The

QoS-aware web service composition mainly focuses on how to select component services to

get optimal overall QoS in a cost-effective manner. Due to the exploration of solution space,

it is a time-consuming process to pick up candidate service. Many heuristic algorithms have

been proposed to tackle this problem [9-12]. However, most of the current researches always

assume that the value of the QoS attribute is static and cannot be changed in the runtime [13,

14]. But this may not be true in the competitive business society. For instance, a cloud service

provider is willing to expand the network bandwidth or cut down the price to improve its

competitiveness at the initial stage. Then, the provider will raise the price to ensure the profit

growing when he already occupied the majority of the market share. Hence the service

composition method needs to consider the proactive change of the QoS.

Furthermore, most of the works tend to generate the composite service with the optimal

QoS, hence only a few services that have the best QoS can be selected. But this strategy may

be not applicable in practice: 1) there is only a small part of services that can be chosen to

provide service for users, which makes these services suffer heavy load burden. Furthermore,

these services may be unavailable if the workloads exceed their maximum capacity; 2) some

services may have little chance to be invoked, even if their QoS can meet the user’s

requirement. This will lead to the load-unbalance between services. It is not true that every

user wants to request the best service. Some users may choose the service with medium QoS

due to their limited budget. For example, some tourists may book five-star hotels, but others

may prefer motels or other hotels at a lower price. Therefore, it is not necessary to generate

the best composite service for every client. The different service providers with diverse QoS

shall have an equal chance to provide service for users.

In this paper, we emphasize the problem of QoS-aware service composition in the multiple

request environment, which takes the dynamic QoS adjustment and service load-balance into

account. This research aims to match the requests with the appropriate services and make sure

that 1) most of the requests can be satisfied; 2) the quality of all of the generated composite

services shall be optimal as far as possible; 3) the workload of services shall be balanced. To

tackle this problem, we propose a novel service composition method named as DCBC

(dynamically change and balancing composition) which considers the QoS and load-balance

simultaneously. This method proposes a mechanism to allow the service provider to adjust the

value of QoS attributes dynamically to improve the probability to be selected. Meanwhile, the

method tries to maintain the relative load balance between services. In this method, the

services with relative fewer requests will be encouraged to improve their QoS to gain more

opportunities to participate in composition.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 893

The rest of the paper is organized as follows: Section 2 introduces a motivation example.

Section 3 reviews the related works. The definition of related concepts and the problem

statement are presented in the section 4. Details of the DCBC method are presented in the

section 5. The experiments and results are discussed in the section 6. The section 7 draws the

conclusions.

2. Motivation Example

In this section, we introduce a typical example in the field of collaborative cloud

manufacturing to demonstrate how the service providers can collaborate and compete with

each other to fulfill the client’s request and keep the load-balance. Fig. 1 shows a simple

product manufacturing workflow, where the rectangle represents the virtual manufacturing

service and the circle represents the concrete manufacturing service. This workflow consists

of three virtual services (VS1, VS2, VS3), which indicates that the product contains three

components and they need to be produced by three independent manufacturers. Each virtual

service has several candidate concrete services, which can produce the required components

of the final product. For example, VS1 has three candidate concrete services (s11, s12, s13),

which are published by different factories. The detail information of candidate concrete

services is presented in Table 1. For simplicity, in this example, we only consider one QoS

attribute. In Table 1, the PRICE column shows the price to invoke the service to produce a

component product, and the DISCOUNT column shows the potential price reduction space,

which is affected by the market competition and decided by the service owner. For instance,

although s11’s original price is 100, but the service owner can adjust the price to be 90 with

10% discount if it wants to improve the competitiveness. In contrast, s13 will always keep its

price unchanged because the discount value is set as NA.

Fig. 1. Service composition example

Suppose that there are five requests in a queue launched by clients: {r1 = 180, r2 =
200, r3 = 130, r4 = 150, r5 = 138} , where the value denotes the maximum price that the

client can afford. Hence the requirement of the request is that the total price of the

manufacturing workflow must not exceed the limit. We assume that the requests are

independent and arrive at a different time, and they will be served in a FIFO mechanism.

894 Wu: A Dynamic QoS Adjustment Enabled and Load-balancing-aware Service
Composition Method for Multiple Requests

Table 1. The Details of Candidate Concrete Services in the Example

SID PRICE DISCOUNT

S11 100 10%

S12 90 20%

S13 80 NA

S21 40 20%

S22 50 10%

S23 60 NA

S24 30 NA

S31 28 NA

S32 30 20%

S33 27 NA

The traditional optimal service composition methods always try to find the best solutions

while ignoring the balance between service providers [15]. Without considering the variability

of QoS, to deal with each of the five requests, the traditional optimal methods will always

generate the composite service {s13, s24, s33} with the total price of 137. Obviously, four

requests will be fulfilled except for r3 in that the price constraint of r3 is lower than the total

price of any composition. However, these solutions may not be optimal in practice. From the

point view of service providers, the service group {s13, s24, s33} will be invoked four times,

while the others will be idle, which leads to load imbalance. For clients, it is unreasonable to

provide composite service with low price to who could afford the high cost, because that the

lower price always means lower quality in other QoS attributes. A possible solution for the

example is shown in Table 2. Each of the rows shows the selected concrete services for each

request. The last column TP shows the total price of the generated composite service. The last

row presents the load of each concrete service. It is easy to find out that although the total price

of composite services generated by this solution is higher than the previous one, it can achieve

a better balance between services. It must be noted that this result is not unique and the best

one. Our goal is to generate composite services with better QoS and try to maintain a better

balance between services.

Table 2. A Possible Solution for the Example

REQ S11 S12 S13 S21 S22 S23 S24 S31 S32 S33 TP

r1=180 √ √ √ 167

r2=200 √ √ √ 190

r3=130 NA

r4=175 √ √ √ 148

r5=138 √ √ √ 137

load 1 1 2 1 1 1 1 1 1 2

Furthermore, to satisfy more clients’ requirement and gain more profits, service providers

are willing to adjust the price of service. In this example, request r3 cannot be fulfilled at the

initial price setting of services. But if the price discount is taken into account, a composite

service {s12(20%), s24, s32(20%)} with the total price, 126 can be generated to fulfill the

request r3, where service s12 and s32 both provide a 20% discount. In that case, all of the

requests can be served.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 895

The example reveals that, in order to maintain the load balance between services, it is more

important to generate suitable composite service rather than the optimal one. The suitable

composition may not be the best one according to QoS but must be the one that meets the

user’s constraint. In a real application, the QoS of service may change over time. Therefore,

the composite service generated by the methods which considering the variable QoS can be

better than the ones produced by traditional composition methods.

Different from the traditional service composition problem which aims to find the optimal

solution, there may be multiple candidate services can be selected to fulfill a request.

Consequently, it is more difficult to select services with better QoS while keeping the load

balance. When considering how to embed the QoS adjustment strategy into the process of

service composition to improve the quality of the solution, the problem becomes more

complicate.

3. Related Work

The literature has presented several pieces of research about QoS-aware service composition

which focus on the dynamic QoS or load-balance composition respectively. Chen et al.

proposed an event-driven continuous query algorithm to deal with the dynamic service [16].

The dynamic situations include the unavailability of service, the change of QoS and the change

of interface. A dependency graph was built in the paper to facilitate the searching for

substitution services. Once a dynamic event occurred, the method would conduct a forward

search starting from the dynamic service and its successors that may be affected. This method

could achieve better performance because only the region of the affected services was updated

instead of all of the web services. The other similar researches also focused on the problem of

adaptive service composition when the QoS of some component services changed [17-20]. In

these researches, the mixed integer programming and heuristic algorithm was used to select

alternate services for the failure services or the services with decreased QoS value. Although

the above- described works have identified the fact that the QoS is not static in real scenarios,

they differ with our work in that: 1) the time when to execute the algorithm is different. The

methods proposed by the above papers are reactive and to be executed when the event of

service failure or QoS decreasing happened, but our method is executed proactively to create

new composite services; 2) the purpose is different. These methods mainly try to keep the

availability or the optimality of the composite service, but the target of our method is to satisfy

the requests and keep the load-balance of services; 3) the effect is different. These methods

could only take care of one single composite service at a time and do not account for the

balance of services, but our method can handle multiple composite services and keep the load-

balance between them.

Some researchers have focused on the problem of the uneven distribution of service

requests in the field of cloud computing [21, 22]. Borrowing from the idea of the traditional

load balancing strategy, some researches have been carried out to focus on the load-balancing

service composition. In the background of collaborative manufacturing, Xue et al. proposed a

computational experiment-based method to evaluate the effect of non-equalization strategy,

equalization strategy and collaborative equalization strategy on the non-equalization

phenomenon [23]. The differences between the three strategies lay in the QoS model,

candidate service solutions set and the adopted composition algorithms. The experiment

showed that the equalization strategy which considered the changeable QoS and the horizontal

collaboration can enhance the utilization rate of most of the services in oversupply market

environment. However, this research does not present a specific algorithm to deal with

896 Wu: A Dynamic QoS Adjustment Enabled and Load-balancing-aware Service
Composition Method for Multiple Requests

equalization-oriented service.

Wang et al. proposed a 0-1 integer programming based service selection method that

considered the service quality and load balance simultaneously [24]. In this study, the Prospect

Theory was adopted to build the QoS utility model; a service load capacity computation model

was also presented. Then they used the 0-1 IP algorithm to select services for multiple

requesters and achieve the maximum value of the combination of the QoS utility and load

capacity. Kang et al. proposed a similar method to maximize the matching degree between the

requests and the web services selected under an environment of multiple requests and web

services [25]. In this research, the Euclidean distance with the weight measurement method

was utilized to evaluate the similarity of the request and service. The 0-1 integer programming

algorithm enhanced with Skyline dominant relation was proposed to produce global optimal

web service selection and keep the load balance between services. However, the studies

described above were designed to resolve the problem of atomic service selection, which can

be considered as the simplified form of the service composition problem. So the methods

proposed in these researches are not suitable for the problem of multiple service composition

with load balance.

Some researches treat the problem of multi-user web service selection as the maximum

matching problem in the bipartite graph and its variants [26-28]. In paper [26], based on the

unbalance transportation problem, Adrian et al. use the Vogel Approximation Method and

Transportation Simplex Method to map the requests to concrete services. Similarly, Wang et

al. proposed a Kuhn-Munkres algorithm-based method to match the requests with services and

prevent the overload of services [27]. In paper [28], Jin et al. proposed a hybrid method

combining Ant colony algorithm with Genetic algorithm and KM algorithm to find the overall

service composition solutions with the maximum overall QoS utility for multiple users.

However, these approaches focus on service selection for only one service at a time. Some

researches focus on the service selection problem for multi-users considering their individual

preferences [29-31]. In this problem, the requests of multi-users may be conflicted or

correlated, which require more complicate coordinate effort to find the optimal services.

Facing the challenge of selecting IoT service compositions for concurrent requests, Sun et al.

reduced the problem to a constrained multi-objective optimization problem and took

advantage of the PSO and GWO algorithm to address it [31]. Liu et al. proposed a service-

oriented artificial bee colony algorithm to select service for concurrent requests [33]. The

object of this method was to produce an optimal global service schema that improves the

revenue of services providers and satisfy the requirement of requesters. Lima et al. [34]

constructed a novel QoS model that classified the QoS attributes into three categories: exact,

required and optimized. Based on this model, a utility model was proposed to evaluate the

similarity of the QoS requirement and the service QoS. Then for each of the simultaneously

incoming service choreography requests, the best-fit services which were not overload are

selected. Although these researches can satisfy the load capacity constraint of services, the

load balance can not be guaranteed. Wang et al. presented an interval number-based method

to describe the service requirement and the service selection algorithm for multi-user [35]. A

hierarchical clustering method was used to partition the candidate services into several service

sets. Then the service with the best similarity with the requirement and the lowest load was

chosen. In paper [36], Xiao et al. modelled the problem of cloud service composition of

competing multi-users as a non-cooperative game and presented an iterative proximate

algorithm to find the Nash equilibrium solution. Although the above studies tried to provide

an equivalent opportunity for service providers, they did not consider the dynamic nature of

service QoS, which is an important feature to be investigated to realized service coordination

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 897

and service load balance.

4. Problem Definition

In this section, we formalize the problem of service composition considering the dynamic QoS

adjustment and load balance. Firstly, the preliminary definitions of related concepts are

presented, which include web service, QoS, abstract workflow, composite service, service

request and request queue. Then, the problem definition is given formally.

4.1 Preliminary Definition of the Related Concept

Definition 1. (Web Service). A web service is a 5-tuple s = {id, t, f, QoS, load}, where:

• id: is the identifier of the service;

• t: is the detail technical information of the service, including the endpoint, input and output

parameters;

• f: is the functional description of the service, serving as the advertisement to support service

discovery;

• QoS: is a set of non-functional attributes of the service, including response time, reliability,

reputation and cost, etc;

• load: is the workload of the service; it is determined by the number of requests to the service

in a given period of time.

Definition 2. (QoS). QoS is a set of non-functional attributes, QoS = {q1, q2, … , qn}, and each

attribute is a 3-tuple qi = {type, vd, p}, where:

• type: is the type of the QoS attribute;

• vd: is the default value of the attribute;

• p: is the maximum percentage that the QoS attribute can change, which ranges from -1 to 1;

The definition of QoS indicates that the actual value of qi is between vd and vd × (1 − p).

The actual value of qi can be decided by the service owner or service running environment.

For example, the response time could increase as the workload of service raised; the price of

the service execution can be cut due to the service owner want to attract more clients. If p is

zero, then the value of the attribute will remain unchanged. At this point, the QoS attributes

can be classified into two categories: changeable and unchangeable.

Note that the QoS attributes can be positive or negative, where the higher the QoS value,

the better the quality, or the higher the QoS value, the worse the quality. For instance, the

attribute reliability is a positive attribute, while the attribute cost is a negative attribute. So for

the positive attribute, if qi. p < 0, it means that actual QoS value would be better than default

value; in contrast, if qi. p > 0, the actual QoS value would be worse than the default value.

For the same reason, for the negative attribute, if qi. p < 0, it means that actual QoS value

would be worse; if qi. p > 0, the actual QoS value would be better.

Definition 3. (abstract workflow). An abstract workflow is a 2-tuple aw = { VS, st}, where:

• VS: is a set of virtual service VS = {vs1, vs2, … , vsm}, where vsi describes the functional

requirement of the services that would be included in the workflow;

• st: is the structure of the abstract workflow, which defines the relationships between virtual

services. The relationship can be a sequence, parallel, loop and alternative. In this paper, for

simplicity, only the sequential structure is considered;

The abstract workflow cannot be invoked because it only comprises virtual services, as the

workflow presented in Fig. 1. After all of the virtual services are replaced with concrete

services, the abstract workflow will turn to be executable workflow.

898 Wu: A Dynamic QoS Adjustment Enabled and Load-balancing-aware Service
Composition Method for Multiple Requests

Definition 4. (composite service). Composite service is a 3-tuple cs = { S, st, Q}, where:

• S: is a set of concrete services, which are defined in definition 1;

• st: is the structure of composite service, which is defined in definition 3;

• Q: is the overall QoS of the WS;

Composite service can be viewed as an instance of abstract workflow where all virtual

services are replaced with concrete services. The overall QoS of composite service is

determined by the QoS of component services and the structure of composite service. There

are usually two ways to calculate the overall QoS, one is Pareto based method, the other one

is the weighted average method [37, 38]. In this paper, we utilized the weighted average

method as described in our previous work [39].

Definition 5. (service request). Service request is a 3-tuple r= { id, time, QC}, where:

• id: is the identifier of the request;

• time: is the timestamp when the request arrives at the server;

• QC: is the QoS constraint of the request;

The service request is sent by the user to invoke a composite service. The QC proposes the

restriction on what kind of concrete component services that can be included in the composite

service. The timestamp of request makes sure that the request can be processed in proper order.

Definition 6. (request queue). Request queue is the list of requests RQ = {r1, r2, … , rl}. By

pushing the new coming request into the request queue, we can make sure that the first

incoming request will be served first.

4.2 Problem Statement

Based on the above definition, we formally present the problem of dynamic QoS adjustment

enabled and load-balancing-aware service composition for multiple requests. Given an

abstract workflow as and a set of web services s = {s1, s2, … , sn}, for a request queue RQ =
{r1, r2, … , rl}, to find a composite service csi for each service request ri in the request queue,

and to optimize the following goals:

min
∑ 𝑢(𝑐𝑠𝑖.𝑄)𝑙−1

𝑖=0

𝑙
 (1)

min
𝑆𝐷(𝑠.𝑙𝑜𝑎𝑑)

∑ 𝑠𝑖.𝑙𝑜𝑎𝑑/𝑛𝑛−1
𝑖=0

 (2)

max
∑ 𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑟𝑖)𝑙−1

𝑖=0

𝑙
 (3)

𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑟𝑖) = {
1, 𝑖𝑓 𝑐𝑠𝑖 . 𝑄 ≽ 𝑟𝑖. 𝑄𝐶
0, 𝑖𝑓𝑐𝑠𝑖 . 𝑄 ≺ 𝑟𝑖. 𝑄𝐶

 (4)

where u(csi. Q) is the utility value of the QoS of the ith composite service. As mentioned in

Definition 4, the utility value is calculated by the weighted average method as described in the

paper [28]. In this paper, we assume that the lower of the utility, the better of quality. Hence

the formula (1) tries to minimize the average utility of all generated composite services.

SD(s. load) is the standard deviation of the workload of web services, so formula (2) aims to

keep load balance between services. In formula (4), csi. Q ≽ ri. QC means the QoS of csi does

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 899

not exceed the QoS constraint of ri , in contrast, csi. Q ≺ ri. QC indicates that csi does not

satisfy the QoS requirement of ri. In formula (3), the numerator stands for the number of

successfully fulfilled requests. Then formula (3) means the fulfilled rate of requests shall be

as high as possible.

From the problem statement, it can be concluded that the problem to be studied in this paper

is a typical MOOP problem (multiple-objective optimal problem). As the other MOOP

problems, the optimization goals may be conflict with others. For instance, the goals presented

by formula (1) and (2) are the pair of conflicting goals. As we pursue the better quality of

composite services, the more likely that the services in minority with better QoS will be chosen

which leads to the unbalance between services. When the dynamic characteristic of the QoS

attribute is considered, it is more difficult to tackle this problem efficiently.

5. DCBC Approach

In this section, we describe the DCBC approach in detail. The main idea and the framework

of the DCBC approach are explained at first. Then the services preprocessing algorithm is

presented. Finally, we briefly describe the algorithm to select candidate web services.

5.1 The Main Idea and the Framework of the DCBC Approach

Fig. 2 demonstrates the framework of the service composition for multiple requests. In which,

there are three parts: 1) the users who launch the service requests; 2) the service broker who

receives the requests and responses for generating the service composition solutions; 3) the

web services provided by service owners. In a given period of time, the requests arrive at the

broker randomly. Similar to the other many online systems, the requests are pushed into the

request queue in a FIFO manner to wait for being processed. Then the broker will remove the

first request in the head of the queue every time.

According to the framework, to improve the throughput, the requests are arranged in a

FIFO queue, which means the broker can process only one request at a time. It is different

from the other researches in [26] that there are a group of requests that can be processed

simultaneously. In this paper, for a request, we need to find a composite service which has

better QoS and does not violate the QoS constraint according to the current work-load of each

candidate services. The straightforward way to generate a solution is to compare all of the

possible combinations of the concrete services, which will lead to the explosion of solution

space. It is not feasible in real application especially the situation that there are a lot of concrete

services for each virtual service of the abstract workflow.

Fig. 2. The Framework of the Service Composition for Multiple Requests

900 Wu: A Dynamic QoS Adjustment Enabled and Load-balancing-aware Service
Composition Method for Multiple Requests

To avoid the exhausting search for all combinations, we select an appropriate concrete

service for each of virtual service. The key issue is how to ensure the chosen concrete service

is the suitable component service of the feasible composite service, and if the QoS attributes

of the chosen service are changeable, how can we determine the actual QoS value. To tackle

this problem, the DCBC approach takes two steps, which are services preprocessing step and

service selection step. The details of the two steps are described in section 5.2 and section 5.3

respectively.

5.2 Preprocessing of Concrete Web Services

The purpose of the preprocessing step is to generate information to filter out unsuitable

concrete services rapidly. For a request 𝑟, we need to go through all of the virtual services

{vs1, vs2, … , vsm} one by one and select a concrete service for each of them. Supposing that

the service sij is a concrete service for the virtual service vsi, to verify if sij can be selected as

the candidate component of the feasible composite service, we can simply calculate the overall

utility value of sij with the services that have been chosen and the best concrete services in the

remain virtual services, as the Fig. 3 demonstrates. If the overall utility value satisfies the

constraint of r, then the service sij can be reserved for further selection, otherwise, sij must be

not the candidate service to fulfill 𝑟..

Fig. 3. Example of verifying the feasibility of concrete services sij

To facilitate the process, for each virtual service vsi, we calculate and store the best overall

QoS utility value (BUV) of vsi′s successive services. As the QoS attribute may be changeable

or unchangeable, BUV also can be classified into two folders, which are fixed one and dynamic

one respectively. The fixed BUV is calculated according to the original QoS value, while the

dynamic BUV is calculated with the consideration of the QoS fluctuation. The following

formulas (5) and (6) are employed to verify the feasibility of concrete service sij

𝑢(𝑉𝑆1, 𝑉𝑆2 … 𝑉𝑆𝑛) = 𝑢(𝑉𝑆1, 𝑉𝑆2 … 𝑉𝑆𝑖−1) + 𝑢(𝑉𝑆𝑖𝑗) + 𝐵𝑈𝑉(𝑉𝑆𝑖+1, 𝑉𝑆𝑖+2 … 𝑉𝑆𝑛) (5)

𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑉𝑆𝑖𝑗) = {
1, 𝑖𝑓 𝑢(𝑉𝑆1, 𝑉𝑆2 … 𝑉𝑆𝑛) ≽ 𝑟. 𝑄𝐶

0, 𝑢(𝑉𝑆1, 𝑉𝑆2 … 𝑉𝑆𝑛) ≺ 𝑟. 𝑄𝐶
 (6)

The algorithm 1 shows the detail of the concrete web services preprocessing step. The

algorithm takes an abstract workflow and a set of concrete web services as input and produces

a set of BUVs. The algorithm mainly contains two steps. The first step, Line 2-7, calculates

the fixed BUV and dynamic BUV of each virtual service. The function getServices() is to

retrieve the concrete services which satisfy the functional requirement of virtual service. Then

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 901

the function getBestFixedQoS() and getBestDynQoS() at line 4 and 5 gain the fixed BUV and

dynamic BUV respectively by comparing services one by one. The second step, from line 8 to

11, performs a backwards BUV calculation. We accumulate the fixed BUV and dynamic BUV

of the latter virtual service to its previous one in each loop. So after the loop, the BUV(vs1)

will store the best fixed and dynamic overall QoS utility value of the abstract workflow 𝑎𝑤,

which are constituted by the optimal concrete web service of each virtual service.

Algorithm 1: Preprocessing the Concrete Web Services

Input: 𝑎𝑤 = { 𝑉𝑆 = {𝑣𝑠1, 𝑣𝑠2, … , 𝑣𝑠𝑚}, 𝑠𝑡}, 𝑠𝑒𝑡(𝑠) = {𝑠1, 𝑠2 … 𝑠𝑛}

Output: a set of BUV

1. set(BUV)=∅

2. for i=1 to m do

3. set(𝑣𝑠𝑖)=getServices(set(s), 𝑣𝑠𝑖)

4. buv(𝑣𝑠𝑖).FQoS=getBestFixedQoS (set(𝑣𝑠𝑖))

5. buv (𝑣𝑠𝑖).DynQoS=getBestDynQoS (set(𝑣𝑠𝑖))

6. set(BUV).add(buv(𝑣𝑠𝑖))

7. end for

8. for i=m-1 to 1 do

9. buv(𝑣𝑠𝑖).FQoS += buv(𝑣𝑠𝑖+1).FQoS

10. buv(𝑣𝑠𝑖).DynQoS += buv(𝑣𝑠𝑖+1).DynQoS

11. end for

12. return set(BUV)

Taking the Fig. 1 and Table 1 as an example, Table 3 presents the procedure and result of

the preprocessing for the workflow which depicted in Fig. 1. BUV.FQoS represents the fixed

BUV and BUV.DynQoS stands for the dynamical BUV.As the direction of arrows shows, step

1 starts from the first virtual service vs1 to the final virtual service vs3. Since that the price

attribute is the only attribute considered in this example, so the BUV is calculated based on

the lowest price. The step 2 starts from the final virtual service and goes backwards to the first

one. In this way, the BUV of latter virtual service is accumulated to the previous one. Finally,

a set of BUV is produced and ready for providing decision making information for service

selection in the next step of the DCBC approach.

Table 3. The Preprocessing Example

 vs1 vs2 vs3

Setp 1:

BUV.FQoS 80 30 27

BUV.DynQoS 72 30 24

Setp 2:

BUV.FQoS 137 57 27

BUV.DynQoS 126 54 24

The time complexity of the preprocessing algorithm is O(m × p), where m is the number

of virtual services and p is the average number of concrete web services of the virtual services.

Obviously, the time complexity of the preprocessing algorithm is low and would not impose

902 Wu: A Dynamic QoS Adjustment Enabled and Load-balancing-aware Service
Composition Method for Multiple Requests

extra load on the service composition.

5.3 Service Selection with the Consideration of Load Balance and Dynamic QoS

In the online application scenarios, the response time is a critical indicator. Especially in the

scenario that there are lots of requests flow in a short time. Therefore, it is important to acquire

a feasible composite service for the request ASAP. To achieve this goal, the algorithm 2 tries

to select concrete service by using a dynamic programming like idea, which selects concrete

service for a virtual service only according to the current state in each step. The following

pseudo code describes the logic of service selection.

Algorithm 2: Service Selection for Requests

Input: 𝑎𝑤 = { 𝑉𝑆 = {𝑣𝑠1, 𝑣𝑠2, … , 𝑣𝑠𝑚}, 𝑠𝑡},

𝑠𝑒𝑡(𝑠) = {𝑠1, 𝑠2 … 𝑠𝑛}, 𝑅𝑄 = {𝑟1, 𝑟2, … , 𝑟𝑙},

set(BUV)= {buv(𝑣𝑠1), buv(𝑣𝑠2), … , buv(𝑣𝑠𝑚)},

Output: a set of composite services

1. set(CS)=∅

2. for i=1 to l do

3. if buv(𝑣𝑠1).FQoS ≺ 𝑟𝑖 .QC and buv(𝑣𝑠1).DynQoS ≺ 𝑟𝑖 .QC then

4. continue;

5. end if

6. 𝑐𝑠𝑖=∅

7. 𝑐𝑠𝑖 .Q=0

8. for j=1 to m do

9. set(𝑣𝑠𝑗)=getServices(set(s), 𝑣𝑠𝑗)

10. if j<m do

11. restBUV=better(buv(𝑣𝑠𝑗). FQoS, buv(𝑣𝑠𝑗). FQoS)

12. else

13. restBUV=0

14. end if

15. for each s in set(𝑣𝑠𝑗) do

16. avgLoad=calAvgLoad(set(𝑣𝑠𝑗))

17. if (s.load<avgLoad or (s.QoS+restBUV+𝑐𝑠𝑖 .Q) ≺ 𝑟𝑖.QC) then

18. s.QoS=s.QoS× (1 − p)

19. end if

20. if ((s.QoS+restBUV+𝑐𝑠𝑖 .Q) ≽ 𝑟𝑖 .QC) then

21. s.probability=calProbability(s)

22. else

23. continue

24. end if

25. end for

26. service=selectServiceWithMaxPro(set(𝑣𝑠𝑗))

27. 𝑐𝑠𝑖 .add(service)

28. 𝑐𝑠𝑖 .Q+=service.QoS

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 903

29. end for

30. set(CS).add(𝑐𝑠𝑖)

31. end for

32. return set(CS)

In the beginning, the set of composite services is initialized to be empty at line 1. The

composite services are the solutions for users’ requests. The main operations of the algorithm

2 are contained in a loop structure, which starts from line 2 to line 31. In one cycle, the

algorithm would generate a composite service for one of the requests. Firstly, the algorithm

checks if the request can be fulfilled at line 3. Benefit from the algorithm 1, we can do this

check quickly by comparing the BUV(vs1) with the QoS constraint of the request ri. If the best

composite service can not meet the requirement of the request ri, then ri will be skipped.

Otherwise, there must be a feasible solution for ri. Secondly, from line 8 to line 30, it selects

concrete service for each of the virtual services. For a virtual service, the algorithm goes over

all of the concrete services that belong to it and calculates their selection probabilities. The

selection probability indicates the chance of concrete service to be chosen as a component

service for ri. The line 21 calculates the selection probability for a service according to the

following formulation:

𝑝𝑖𝑗 =
𝐴

𝑢(𝑠𝑖𝑗.𝑄𝑜𝑆)×(1+𝑠𝑖𝑗.𝑙𝑜𝑎𝑑)𝛼 (7)

Where pij denotes the selection probability of the jth concrete service of the ith virtual

service; u(sij. QoS) returns the utility value of sij′s QoS, here we assume that the better of the

QoS, the smaller the utility value; α means the importance of the load of service, which is not

less than zero; A is a const positive integer. From the formula (7), we can see that the selection

probability is decided by the QoS and the workload of service. The services with better QoS

and lower workload are more likely to be selected. Remind that the QoS of service may not be

fixed, in lines 17-19, the service can change its QoS according to the following criteria: 1) if

the fixed QoS of the service sij can not meet the constraints of the request ri; 2) if the workload

of service sij is lower than the average workload of concrete services that relate to vsi. If one

of the criteria is met, the service can change its QoS as line 18 does. The first criterion indicates

that a service can improve the service quality dynamically to fulfill the request and win the

service competition with the other concrete services. The second criterion makes sure that the

workload of services can be kept balance. We can change the value of the parameter α to select

service by emphasizing on the QoS or load balance. If the parameter α is set to be zero, then

the service selection strategy is equivalent to QoS-aware selection without considering load

balance, which will result to the situation that only the services with best QoS can be composed

for every request. Due to the consideration for balancing QoS and workload, the value of

parameter α must be set greater than zero. In section 6, we carry out an experiment to evaluate

the impact of parameter α on the quality of composition solutions. Line 20 checks if the current

concrete service sij can meet the constraint of request. According to the formula (6), if the sum

of the QoS of sij, the BUV of reset of services and the current QoS of selected service can not

meet the constraint, then the service sij will be skipped. Finally, in line 26-27, all of the

qualified candidate services will be compared according to the selection probability, then the

Roulette Wheel selection mechanism is applied to choose the component service of csi from

the top 20% candidate services according to the probability.

904 Wu: A Dynamic QoS Adjustment Enabled and Load-balancing-aware Service
Composition Method for Multiple Requests

The time complexity of the algorithm 2 is O(l × m × p), where l is the number of requests,

m is the number of virtual services and p is the average number of concrete web services of

the virtual services. Combined with the algorithm 1, the time complexity of the DCBC method

is O(l × m × p). On the basis of the service preprocessing, the running time of the DCBC

method is in a low order of magnitude.

6. Experiments

To evaluate the effectiveness of the DCBC method, we carry out several experiments in this

section. The first set of experiments is to compare the effectiveness of the DCBC approach

with other methods. The second set of experiments is to evaluate the impact of parameters on

the DCBC method. These experiments mainly focus on the quality of solutions, the load

balance of services and the number of requests being fulfilled, which are measured by the

formulas (1), (2) and (3) that presented in section 4.2.

We generate a set of synthetic data for the experiments. The experiment dataset includes

information about abstract workflows, concrete services and service requests. For each of

concrete service, the price and response time attributes are concerned. The major parameters

to generate the experiment dataset are the number of virtual services, the number of concrete

services for each virtual service, the percent of concrete services that has dynamic QoS, and

the number of requests. The detail information of the experiment data will be described in the

following sections.

The related algorithms are implemented in C++ by visual studio 2017. All of the

experiments are performed on a laptop with an Intel I7-7500 CPU, 8 GB RAM and Windows

10 operating system.

6.1 Effectiveness Evaluation of DCBC Approach

In this section, we compare the DCBC approach with the other three methods, which are the

BoC, DoC and QDEC method respectively. The BoC method is the Balance-only-

Composition version of DCBC which tries to keep the balance of services while without

considering the dynamic QoS. Specifically, compared to the DCBC method, the BoC method

lacks of the line16 to line 19 in algorithm 2. In contrast, the DoC method is the Dynamic-only-

Composition version which supports the adjustment of QoS value in runtime, but the load

balance is not guaranteed. In DoC method, the mechanism of QoS adjustment is different with

the DCBC approach in that the Qos adjustment occurs only in the case that the QoS of service

cannot satisfy with the requirement of requests. Therefore, the line 17 of algorithm 2 of DoC

method shall be: if ((s.QoS+restBUV+𝑐𝑠𝑖 .Q) ≺ 𝑟𝑖 .QC). Furthermore, the parameter α of

formula (7) in DoC method is set to be zero. The QDEC method is proposed in paper [37],

which adopts global QoS decomposition and Kuhn-Munkres algorithm to select services for

each request.

In this evaluation, the number of tasks in the workflow is set to be 30; the number of

concrete services for each task ranges from 50 to 60. In the DCBC approach, 10 percent of

services are randomly chosen to support the dynamical QoS changing. And then the

changeable space of the QoS attribute is randomly set to between 0 and 10%. The number of

service requests ranges from 100 to 1000.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 905

Fig. 4. Effectiveness Comparison

Fig. 4 shows the experiment result. The part (a) demonstrates the percent of successful

requests to the total service requests. It can be seen that the rate of fulfilled requests of the four

methods decreases as the number of requests increases, which is because that there are fewer

services available for the later requests as the number of requests increases. But the DCBC

and DoC algorithm is always better than the other two. The reason is that the DCBC and DoC

algorithm try to meet the requirement of requests as far as possible by adjusting the QoS of

service. From the part (b), we can see that the DCBC and BoC algorithm can maintain better

load-balance than DoC and QDEC. This is due to that the DoC algorithm always selects the

services with better QoS, which leads to the result that some other services have no chance to

be invoked. The part (c) demonstrates the quality of composition services produced by the four

algorithms, where the vertical coordinate shows the utility value of composition services. The

figure indicates that the DoC and QDEC algorithm can generate solutions with better quality.

The above experiments reveal that the DCBC method achieves a balance between load-balance

and solution quality. The BoC and DoC algorithm can be seen as the extreme versions of the

DCBC method which emphasizes on load-balance and quality respectively. If only the load-

balance is considered, the request satisfaction rate will decrease, as the part (1) shows. If only

the dynamic QoS is considered, the quality of solutions can not be guaranteed, as the part (2)

shows. So the DCBC method achieves better request satisfaction rate and load balancing by

losing the quality of solutions.

6.2 Analysis of Key Parameters

In this section, a set of experiments are carried out to analyze the impact of key parameters on

the efficiency of the DCBC method. These parameters include the importance factor of load-

balance α, the number of virtual services, the number of concrete services, and the percent of

services which support dynamical QoS changing.

Fig. 5 shows the result of the evaluation of the important factor of load-balance α. To test

the impact of α, we set the value of α from 0 to 2 and step by 0.2. The number of requests is

set to be 1000, the number of virtual services is 30, and the number of concrete services for

each virtual service is between 190 and 200. The part (a) of Fig. 5 demonstrates how the

request satisfaction rate is affected by α. As the value of α increases, the request satisfaction

rate drops gradually, since some candidate services with better QoS may not be chosen to keep

balance between services. This is the same reason to cause the decline of QoS, as the part (c)

of Fig. 5 shows. The part (b) illustrates that the services reach better load balance as the value

of α grows. From Fig. 5, it can be concluded that the value of α is not the larger the better, we

need to weigh and consider the load-balance and service quality.

Fig. 6 shows the impact of various numbers of virtual services. The number of virtual

services indicates the complexity of the workflow. In this experiment, the number of requests

906 Wu: A Dynamic QoS Adjustment Enabled and Load-balancing-aware Service
Composition Method for Multiple Requests

is set to be 1000, the number of concrete services for each virtual service is between 190 and

200, and the number of virtual services ranges from 5 to 50 and step by 5. From the part (a),

we can see that the request satisfaction ratio stays steady when the number of virtual services

goes from 5 to 25, but it decreases as the number of virtual services goes from 30 to 50. The

same phenomenon can be observed from part (b). It indicates that the number of virtual

services has negative impact on the effect of the DCBC method. But the quality of composite

services can keep stable as the number of virtual services grows, which is demonstrated in part

(c).

Fig. 7 shows the impact of various numbers of concrete services. In this experiment, the

number of requests is 1000, the number of virtual services is 30, and the number of concrete

services ranges from 20 to 200 and step by 20. The part (a) shows that the request satisfaction

rate increases from about 27% to near 80% when the number of concrete services goes from

20 to 200. It is because that the more candidate services provide the more chances to fulfill

user’s requests. Conversely, it is difficult to maintain load-balance as the number of concrete

services increases, as which revealed by the part (b). The part (c) shows that the quality of

composite services improves with the number of concrete services raises.

Fig. 8 demonstrates how the percent of services with dynamic QoS affect the effectiveness

of the DCBC method. In this experiment, the number of requests is set to 1000, the number of

concrete services for each virtual service is between 190 and 200, and the percent of services

with dynamic QoS ranges from 10% to 50% and step by 10%. The part (a) shows that the

request satisfaction rate increases as the percent of services with dynamic QoS increases. The

more services could adjust the QoS, the more requests could be fulfilled. In part (b), we can

see that it is more unbalance between services when the number of services with dynamic QoS

is less, but it finally reaches better balance when the number of services with dynamic QoS

increased. The part (c) also reveals that the quality of composition services improves as the

percent of services with dynamic QoS increases. This experiment indicates that the dynamic

QoS is critical to producing the better composition services, and it could not be ignored.

Fig. 5. Evaluation of the impact of the importance factor

Fig. 6. Evaluation of the impact of the number of virtual services

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 907

Fig. 7. Evaluation of the impact of the number of concrete services

Fig. 8. Evaluation of the impact of the percent of service with DQoS

7. Conclusion

Service selection with optimal overall QoS and keep the load balance between services is an

important issue in the field of service composition. In this paper, a novel method, DCBC, is

proposed to tackle this problem. In this method, we assume that the QoS of service is not static

and can be changed to a certain extent. The DCBC method encourages service providers to

dynamically improve the service QoS to gain more requesters. To achieve the goal of load

balance, the service with a lower load will provide better QoS to be chosen. The two steps of

the DCBC method, web services preprocessing and service selection, are introduced to

facilitate the process of service composition. The experiments show that the DCBC method

can generate the optimal composite service effectively.

However, the problem of requests over satisfaction still exists in our proposed method,

especially in the initiating stage. For this reason, in the next research, we will extend our work

to provide composite service with proper QoS according to the user’s request. Furthermore,

the QoS adjustment method is too rigid in the current work, which is another concern in the

next research.

References

[1] L. Zhang, Y. Luo, F. Tao, B. H. Le, L. Ren, X. Zhang, H. Guo, Y. Cheng, A. Hu, and Y. Liu,

“Cloud manufacturing: a new manufacturing paradigm,” Enterprise Information Systems, vol. 8,

no. 2, pp. 167-187, 2014. Article (CrossRef Link)

[2] B. Xia, Y. Fan, W. Tan, K. Huang, J. Zhang, and C. Wu, “Category-aware API clustering and

distributed recommendation for automatic mashup creation,” IEEE Transactions on Services

Computing, vol. 8, no. 5, pp. 674-687, 2014. Article (CrossRef Link)

https://doi.org/10.1080/17517575.2012.683812
https://doi.org/10.1109/TSC.2014.2379251

908 Wu: A Dynamic QoS Adjustment Enabled and Load-balancing-aware Service
Composition Method for Multiple Requests

[3] C. Jatoth, G. R. Gangadharan, and R. Buyya, “Computational intelligence based QoS-aware web

service composition: A systematic literature review,” IEEE Transactions on Services Computing,

vol. 10, no. 3, pp. 475-492, 2015. Article (CrossRef Link)

[4] H. Zheng, J. Yang, and W. Zhao, “Probabilistic QoS aggregations for service composition,” ACM

Transactions on the Web (TWEB), vol. 10, no. 2, 2016. Article (CrossRef Link)

[5] A. Naseri and N. J. Navimipour, “A new agent-based method for QoS-aware cloud service

composition using particle swarm optimization algorithm,” Journal of Ambient Intelligence and

Humanized Computing, vol. 10, pp. 1851-1864, 2019. Article (CrossRef Link)

[6] B. Bhattu, C. Jatoth, G. R. Gangadharan, and U. Fiore, “A MapReduce‐based modified Grey Wolf

optimizer for QoS‐aware big service composition,” Concurrency and Computation: Practice and

Experience, vol. 32, no. 8, 2020. Article (CrossRef Link)

[7] S. Niu, G. Zou, Y. Gan, Y. Xiang, and B. Zhang, “Towards the optimality of QoS-aware web

service composition with uncertainty,” International Journal of Web and Grid Services, vol. 15,

no. 1, 2019. Article (CrossRef Link)

[8] X. Wang, X. Xu, Q. Z. Sheng, Z. Wang, and L. Yao, “Novel Artificial Bee Colony Algorithms for

QoS-Aware Service Selection,” IEEE Transactions on Services Computing, vol. 12, no. 2, pp. 247-

261, 2019. Article (CrossRef Link)

[9] S. Bhushan and P. C. H. Reddy, “A hybrid meta-heuristic approach for QoS-aware cloud service

composition,” International Journal of Web Services Research (IJWSR), vol. 15, no. 2, pp. 1-20,

2018. Article (CrossRef Link)

[10] C. Li, J. Li and H. Chen, “A Meta-Heuristic-Based Approach for Qos-Aware Service Composition,”

IEEE Access, vol. 8, pp. 69579-69592, 2020. Article (CrossRef Link)

[11] H. Fekih, S. Mtibaa, and S. Bouamama, “An Efficient User-Centric Web Service Composition

Based on Harmony Particle Swarm Optimization,” International Journal of Web Services

Research, vol. 16, no. 1, pp. 1-21, 2019. Article (CrossRef Link)

[12] J. Lartigau, X. Xu, L. Nie, and D. Zhan, “Cloud manufacturing service composition based on QoS

with geo-perspective transportation using an improved Artificial Bee Colony optimisation

algorithm,” International Journal of Production Research, vol. 53, no. 14, pp. 4380-4404, 2015.

Article (CrossRef Link)

[13] E. M. Khanouche, H. Gadouche, Z. Farah, and A. Tari, “Flexible QoS-aware services composition

for Service Computing environments,” Computer Networks, vol. 166, 2019.

Article (CrossRef Link)

[14] S. K. Gavvala, C. Jatoth, G. R. Gangadharan, and R. Buyya, “QpS-aware cloud service

composition using eagle strategy,” Future Generation Computer Systems, vol. 90, pp. 273-290,

2019. Article (CrossRef Link)

[15] X. Dong, Q. Liu, D. Lu, S. Ma, and J. Zheng, “QoS-Aware Path Finding and Load Balancing in

Service-Composition,” in Proc. of International Conference on Networking and Network

Applications, pp. 409-414, 2019. Article (CrossRef Link)

[16] C. Lv, W. Jiang, S. Hu, J. Wang, G. Lu, and Z. Liu, “Efficient dynamic evolution of service

composition,” IEEE Transactions on Services Computing, vol. 11, no. 4, pp. 630-643, 2015.

Article (CrossRef Link)

[17] L. Barakat, S. Miles, and M. Luck, “Adaptive composition in dynamic service environments,”

Future Generations Computer System, vol. 80, pp. 215-228, 2019. Article (CrossRef Link)

[18] Y. Que, W. Zhong, H. Chen, X. Chen, and X. Ji, “Improved adaptive immune genetic algorithm

for optimal QoS-aware service composition selection in cloud manufacturing,” The International

Journal of Advanced Manufacturing Technology, vol. 96, pp. 4455-4465, 2018.

Article (CrossRef Link)

[19] P. Wang, J. Meng, T. Liu, Y. Zhan, W. T. Tsai, and Z. Jin, “Smart-Contract based Negotiation for

Adaptive QoS-aware Service Composition,” IEEE Transactions on Parallel and Distributed

Systems, vol. 30, no. 6, pp. 1403-1420, 2018. Article (CrossRef Link)

[20] E. Khanfir, R. B. Djmeaa, and I. Amous, “Self-Adaptive Goal-Driven Web Service Composition

Based on Context and QoS,” in Proc. of IEEE 14th International Conference on e-Business

Engineering, pp. 201-207, 2017. Article (CrossRef Link)

https://doi.org/10.1109/TSC.2015.2473840
https://doi.org/10.1145/2876513
https://doi.org/10.1007/s12652-018-0773-8
https://doi.org/10.1002/cpe.5351
https://doi.org/10.1504/IJWGS.2019.10017534
https://doi.org/10.1109/TSC.2016.2612663
https://doi.org/10.4018/IJWSR.2018040101
https://doi.org/10.1109/ACCESS.2020.2987078.
https://doi.org/10.4018/IJWSR.2019010101
https://doi.org/10.1080/00207543.2015.1005765
https://doi.org/10.1016/j.comnet.2019.106982
https://doi.org/10.1016/j.future.2018.07.062
https://doi.org/10.1109/NaNA.2019.00077
https://doi.org/10.1109/TSC.2015.2466544
https://doi.org/10.1016/j.future.2016.12.003
https://doi.org/10.1007/s00170-018-1925-x
https://doi.org/10.1109/TPDS.2018.2885746
https://doi.org/10.1109/ICEBE.2017.39

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 909

[21] S. L. Chen, Y. Y. Chen, and S. H. Kuo, “CLB: A novel load balancing architecture and algorithm

for cloud services,” Computers & Electrical Engineering, vol. 58, pp. 154-160, 2017.

Article (CrossRef Link)

[22] O. Hioual, Z. Boufaïda, and S. M. Hemam, “Load balancing, cost and response time minimisation

issues in agent-based multi cloud service composition,” International Journal of Internet Protocol

Technology, vol. 2, no. 2, 2017. Article (CrossRef Link)

[23] X. Xiao, Y. M. Kou, S. F. Wang, and Z. Z. Liu, “Computational experiment research on the

equalization-oriented service strategy in collaborative manufacturing,” IEEE Transactions on

Services Computing, vol. 11, no. 2, pp. 369-383, 2016. Article (CrossRef Link)

[24] X. Wang, J. Liu, B. Cao, and M. Tang, “A global optimal service selection approach based on QoS

and load-aware in cloud environment,” in Proc. of 2013 IEEE 10th International Conference on

High Performance Computing and Communications & 2013 IEEE Inter-national Conference on

Embedded and Ubiquitous Computing, pp. 762-768, 2013. Article (CrossRef Link)

[25] G. Kang, J. Liu, M. Tang, X. Liu, and K. K. Fletcher, “Web service selection for resolving

conflicting service requests,” in Proc. of IEEE International Conference on Web Services, pp. 387-

394, 2011. Article (CrossRef Link)

[26] A. S. Kurdija, M. Šilić, G. Delač, K. Vladimir, and S. Srbljić, “Efficient Multi-user Service

Selection Based on the Transportation Problem,” in Proc. of International Conference on Web

Services, pp. 507-515, 2018. Article (CrossRef Link)

[27] S. Wang, C. H. Hsu, Z. Liang, Q. Sun, and F. Yang, “Multi-user web service selection based on

multi-QoS prediction,” Information Systems Frontier, vol. 16, pp. 143-152, 2014.

Article (CrossRef Link)

[28] H. Jin, H. Zou, F. Yang, R. Lin, and X. Zhao, “A hybrid service selection approach for multi-user

requests," in Proc. of 2012 IEEE 14th International Conference on High Performance Computing

and Communication & 2012 IEEE 9th International Conference on Embedded Software and

Systems, pp. 1142-1149, 2012. Article (CrossRef Link)

[29] B. Heinrich, L. Lewerenz, M. Mayer, and M. Klier, “Enhancing Decision Support in Multi User

Service Selection,” in Proc. of International Conference on Information Systems, pp. 1-20, 2015.

Article (CrossRef Link)

[30] M. Mayer, “Multi-user service re-selection: react dynamically to events occurring at process

execution,” in Proc. of the 25th European Conference on Information Systems (ECIS), pp. 1807-

1821, 2017. Article (CrossRef Link)

[31] B. Heinrich and M. Mayer, “Service selection in mobile environments: considering multiple users

and context-awareness,” Journal of Decision Systems, vol. 27, no. 2, pp. 92-122, 2018.

Article (CrossRef Link)

[32] M. Sun, Z. Zhou, J. Wang, C. Du, and W. Gaaloul, “Energy-Efficient IoT Service Composition for

Concurrent Timed Applications,” Future Generation Computer Systems, vol. 100, pp. 1017-1030,

2019. Article (CrossRef Link)

[33] Z. Liu and X. Xu, “S-ABC - A Service-Oriented Artificial Bee Colony Algorithm for Global

Optimal Services Selection in Concurrent Requests Environment,” in Proc. of IEEE International

Conference on Web Service, pp. 503-509, 2014. Article (CrossRef Link)

[34] J. C. Lima, R. C. A. Rocha, and F. M. Costa, “An approach for qos-aware selection of shared

services for multiple service choreographies,” in Proc. of IEEE Symposium on Service-Oriented

System Engineering, pp. 221-230, 2016. Article (CrossRef Link)

[35] H. Wang and Y. Cheng, “Interval Number Based Service Selection for Multi-users' Requirements,”

in Proc. of IEEE International Conference on Web Services (ICWS), pp. 712-715, 2016.

Article (CrossRef Link)

[36] Z. Xiao, Y. Guo, G. Liu, and J. Du, “Noncooperative Optimization of Multi-user Request Strategy

in Cloud Service Composition Reservation,” in Proc. of International Conference on Algorithms

and Architectures for Parallel Processing, vol. 11334, pp. 138-152, 2018. Article (CrossRef Link)

[37] S. Bhushan and P. C. H. Reddy, “A Hybrid Meta-Heuristic Approach for QoS-Aware Cloud

Service Composition,” International Journal of Web Services Research, vol. 15, no. 2, pp. 1-20,

2018. Article (CrossRef Link)

https://doi.org/10.1016/j.compeleceng.2016.01.029
https://doi.org/10.1504/IJIPT.2017.085187
https://doi.org/10.1109/TSC.2016.2569082
https://doi.org/10.1109/HPCC.and.EUC.2013.111
https://doi.org/10.1109/ICWS.2011.37
https://doi.org/10.1007/978-3-319-94289-6_32
https://doi.org/10.1007/s10796-013-9455-4
https://doi.org/10.1109/HPCC.2012.168
https://doi.org/10.5283/epub.32558
https://doi.org/10.5283/epub.36223
https://doi.org/10.1080/12460125.2018.1513223
https://doi.org/10.1016/j.future.2019.05.070
https://doi.org/10.1109/ICWS.2014.77
https://doi.org/10.1109/SOSE.2016.62
https://doi.org/10.1109/ICWS.2016.100
https://doi.org/10.1007/978-3-030-05051-1_10
https://doi.org/10.4018/IJWSR.2018040101

910 Wu: A Dynamic QoS Adjustment Enabled and Load-balancing-aware Service
Composition Method for Multiple Requests

[38] O. Alsaryrah, I. Mashal, and T. Y. Chung, “Bi-objective optimization for energy aware IoT service

composition,” IEEE Access, vol. 6, pp. 26809-26819, 2018. Article (CrossRef Link)

[39] X. Wu, C. Chen, and H. Huang, “A Data Volume Aware Ant Colony Optimization Approach for

Geographical Knowledge Cloud Service Composition,” International Journal of Grid and

Distributed Computing, vol. 9, no. 6, pp. 103-116, 2016. Article (CrossRef Link)

Xiaozhu Wu received the MSc degree in computer science from Fuzhou University,

China, in 2005, the PhD degrees in communication&information system from Fuzhou

University, China, in 2014. He is currently a lecture in college of mathematics and computer

science at Fuzhou University, China. His fields of research are focused on service

computing, spatial data mining & geographical knowledge grid/cloud.

https://doi.org/10.1109/ACCESS.2018.2836334
https://doi.org/10.14257/ijgdc.2016.9.6.11

