• Title/Summary/Keyword: static & dynamic characteristics

Search Result 1,167, Processing Time 0.023 seconds

Nanotribological Characterization of Annealed Fluorocarbon Thin Film in N2 and Vacuum (질소와 진공 분위기에서 에이징 영향에 따른 불화유기박막의 나노트라이볼러지 특성 평가)

  • 김태곤;김남균;박진구;신형재
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.193-197
    • /
    • 2002
  • The tribological properties and van der Waals attractive forces and the thermal stability of films are very important characteristics of highly hydrophobic fluorocarbon (FC) films for the long-term reliability of nano system. The effect of thermal annealing on films and van der Waals attractive forces and friction coefficient of films have been investigate d in this study. It was coated Al wafer which was treated O2 and Ar that ocatfluorocyclobutane ($C_4_{8}$) and Ar were supplied to the CVD chamber in the ratio of 2:3 for deposition of FC Films. Static contact angle and dynamic contact angle were used to characterize FC films. Thickness of films was measured by variable angle spectroscopy ellipsometer (VASE). Nanotribological data was got by atomic force microscopy (AFM) to measure roughness, lateral force microscopy (LFM) to measure friction force, and force vs. distance (FD) curve to evaluate adhesion force. FC films were cured in N2 and vacuum. The film showed the slight changes in its properties after 3 hr annealing. FTIR ATR studies showed the decrease of C-F peak intensity in the spectra as the annealing time increased. A significant decrease of film thickness has been observed. The friction force of Al surface was at least thirty times higher than ones with FC films. The adhesive force of bare Al was greater than 100 nN. After deposit FC films adhesive force was decreased to 40 nN. The adhesive force of films was decreased down to 10 nN after 24 hr annealing. During 24 hr annealing in $N_2$and vacuum at $100^{\circ}C$ film properties were not changed so much.

  • PDF

RETF 액체산소 공급설비 및 엔진 수류시험

  • Han, Yeoung-Min;Cho, Nam-Kyung;Kim, Seung-Han;Chung, Yong-Ghap;Park, Sung-Jin;Lee, Kwang-Jin;Kim, Young-Han;Moon, Il-Yoon
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.123-131
    • /
    • 2002
  • In this paper, characteristics of cryogenic liquid oxygen was examined during cold flow of KSR-III main engine at each stage. The effect of venting was examined at the stage of cooling and at the pressurization stage, the interaction between nitrogen gas and liquid oxygen was also examined. The characteristic of liquid oxygen in the engine manifold was analyzed. The results showed that venting was the primary role at the cooling process and the interaction of nitrogen gas and liquid oxygen in the run tank is limited at the surface area. With the sampling rate of 1KHz static and dynamic pressure were measured in the rocket engine manifold and in the LOX supply equipment. 32.5mm and 38mm orifice were installed for the tests and pressure condition of liquid oxygen was 23Bar, 29Bar, 41Bar. Increase of orifice diameter and decrease of supply pressure reduced the perturbation of pressure in engine manifold.

  • PDF

Mechanical and Thermal Characteristics of Polyurethane Foam with Two Different Reinforcements and the Effects of Ultrasonic Dispersion in Manufacturing (이종 강화재를 첨가한 폴리우레탄 폼의 기계적 및 열적 특성과 제작 시 초음파 분산의 영향)

  • Kim, Jin-Yeon;Kim, Jeong-Dae;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.515-522
    • /
    • 2019
  • Since Liquefied Natural Gas (LNG) is normally carried at 1.1 bar pressure and at -163℃, special Cargo Containment System (CCS) are used. As LNG carrier is becoming larger, typical LNG insulation systems adopt a method to increase the thickness of insulation panel to reduce sloshing load and Boil-off Rate (BOR). However, this will decrease LNG cargo volume and increase insulation material costs. In this paper, silica aerogel, glass bubble were synthesized in polyurethane foam to increase volumetric efficiency by improving mechanical and thermal performance of insulation. In order to increase dispersibility of particles, ultrasonic dispersion was used. Dynamic impact test, quasi-static compression test at room temperature (20℃) and cryogenic temperature (-163℃) was evaluated. To evaluate the thermal performance, the thermal conductivity at room temperature (20℃) was measured. As a result, specimens without ultrasonic dispersion have a little effect on strength under the compressive load, although they show high mechanical performance under the impact load. In contrast, specimens with ultrasonic dispersion have significantly increased impact strength and compressive strength. Recently, as the density of Polyurethane foam (PUF) has been increasing, these results can be a method for improving the mechanical and thermal performance of insulation panel.

Buckling and dynamic characteristics of a laminated cylindrical panel under non-uniform thermal load

  • Bhagat, Vinod S.;Pitchaimani, Jeyaraj;Murigendrappa, S.M.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1359-1389
    • /
    • 2016
  • Buckling and free vibration behavior of a laminated cylindrical panel exposed to non-uniform thermal load is addressed in the present study. The approach comprises of three portions, in the first portion, heat transfer analysis is carried out to compute the non-uniform temperature fields, whereas second portion consists of static analysis wherein stress fields due to thermal load is obtained, and the last portion consists of buckling and prestressed modal analyzes to capture the critical buckling temperature as well as first five natural frequencies and associated mode shapes. Finite element is used to perform the numerical investigation. The detailed parametric study is carried out to analyze the effect of nature of temperature variation across the panel, laminate sequence and structural boundary constraints on the buckling and free vibration behavior. The relation between the buckling temperature of the panel under uniform temperature field and non-uniform temperature field is established using magnification factor. Among four cases considered in this study for position of heat sources, highest magnification factor is observed at the forefront curved edge of the panel where heat source is placed. It is also observed that thermal buckling strength and buckling mode shapes are highly sensitive to nature of temperature field and the effect is significant for the above-mentioned temperature field. Furthermore, it is also observed that the panel with antisymmetric laminate has better buckling strength. Free vibration frequencies and the associated mode shapes are significantly influenced by the non-uniform temperature variations.

Study on Durability of Wood Deck according to Species (수종별 목재 데크재의 내구성에 관한 연구)

  • Kim, Kyoung Jung;Lee, Won Jae;Choi, Chul;Kim, Hee Jin;Kang, Seog Goo
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.2
    • /
    • pp.111-117
    • /
    • 2017
  • Recently, as people's interest in wood has increased, the use of wood as household and landscape decking materials has increased. As the deck material, imported wood such as synthetic wood, Ipe, and Malas was used in addition to the existing preserved wood, but recently deck use has been activated as part of the activation of domestic materials. As an important quality factor in the selection of such decking materials, various durability along with weatherability for long - term use is required for maintenance. Generally used tropical hardwoods have excellent weatherability and durability without additional preservative treatment. However, the domestic larch is a wood species with a higher specific gravity and durability than ordinary conifers. However, it has not yet been used as a deck material due to lack of comparative studies on its characteristics. Therefore, hardness and durability of wood were measured using six specimens of Ipe, Massaranduba, Malas, Douglas-fir, Larch and Torrefied-Larch. Density Profile was used to measure the density, and Brinell hardness test and resistance test against momentary impact were carried out for the test of resistance to static load. Also, The hardness and durability of wood were measured by castor test with resistance test against dynamic load, as well as, nail down test by experiment on surface hardness and durability. As a result of the experiment, the hardness was increased in proportion to the density, and it was confirmed that the imported lumber was harder and durable than the domestic larch.

Improvement of Noise Characteristics by Analyzing Power Integrity and Signal Integrity Design for Satellite On-board Electronics (위성용 전장품 탑재보드의 Power Integrity 및 Signal Integrity 설계 분석을 통한 노이즈 성능 개선)

  • Cho, Young-Jun;Kim, Choul-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • As the design complexity and performances are increased in satellite electronic board, noise related problems are also increased. To minimize the noise issues, various design improvements are performed by power integrity and signal integrity analysis in this research. Static power and dynamic power design are reviewed and improved by DC IR drop and power impedance analysis. Signal integrity design is reviewed and improved by time domain signal wave analysis and PCB(Printed Circuit Board) design modifications. And also power planes resonance modes are checked and mitigation measures are verified by simulation. Finally, it is checked that radiated noise is reduced after design improvements by EMC(Electro Magnetic Compatibility) RE(Radiated Emission) measurement results.

A Study on the Experience and Satisfaction Level of the Apartment Interior Design - Focused on the Apartment Model House in Ulsan City - (아파트 실내 공간 체험과 만족도에 관한 연구 - 울산지역 모델하우스를 중심으로 -)

  • Kim, Jung-Keun
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.6
    • /
    • pp.20-27
    • /
    • 2009
  • This study aims to understand the consumer consciousness of the interior design by experiencing the interior space of the model house provided by the construction company. For this, the author investigated the spatial images about the apartment interior design and the satisfaction level depending on the experiential elements. Survey questionnaires were distributed to people who visited six model houses. Subjects were asked about the experience about the interior space of the model house. Their response to the experiential elements was analyzed with 5-point Likert scale and was computed as frequencies, percentages, and means. For the spatial image characteristics, adjectives were substituted for the image scales. As a result, the author found out the following: First, the interior space was commonly directed to the soft image, which was mixed with modern, noble, decent, dynamic and natural styles depending on the companies. The trend of each interior design basically had static, soft and vague images, and partially had two kinds of tendencies: the one was mild and natural, and the other was modern and elegant. Second, as the strategic modules of the experiential marketing, five experiential elements were investigated to find the satisfaction level through the model house interior space. The emotional element got the highest point followed by the cognitive element and the active element, while the sensible element and the relative element got the lowest point. Third, consumer response was generally positive toward the model house interior design provided by the construction company. It is necessary to make up for the design that can give an aesthetic pleasure with familiar images, rather than give a firm recognition about the design.

Approach to Specify a Component using Component Structure in Product Lines (제품 라인에서 컴포넌트 구조를 활용한 컴포넌트 스펙 방법)

  • Cho Hye-Kyung
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.3
    • /
    • pp.289-300
    • /
    • 2006
  • Product line is nowadays well known as a representative method for reuse. In the product line, important assets are components. Although enough concerns were given of the product line, it was not accomplished to structure and specify a product-line component with variability. This paper presents an approach to specify components in the product line. The approach describes the static and dynamic structure of a product-line component and explains the behavior and concurrency of the component. The component information is separately described in the black-box and white-box using the Feature-Oriented Reuse Method(FORM). This research also formalizes the data on a component specification in the form of BNF. The specification is described through careful consideration for many different characteristics of the product-line component, so this paper helps to easily develop the components in the product line and to well comprehend how to apply a method for the product line.

Detection of unexploded ordnance (UXO) using marine magnetic gradiometer data (해양 자력구배 탐사자료를 이용한 UXO 탐지)

  • Salem Ahmed;Hamada Toshio;Asahina Joseph Kiyoshi;Ushijima Keisuke
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.97-103
    • /
    • 2005
  • Recent development of marine magnetic gradient systems, using arrays of sensors, has made it possible to survey large contaminated areas very quickly. However, underwater Unexploded Ordnances (UXO) can be moved by water currents. Because of this mobility, the cleanup process in such situations becomes dynamic rather than static. This implies that detection should occur in near real-time for successful remediation. Therefore, there is a need for a fast interpretation method to rapidly detect signatures of underwater objects in marine magnetic data. In this paper, we present a fast method for location and characterization of underwater UXOs. The approach utilises gradient interpretation techniques (analytic signal and Euler methods) to locate the objects precisely. Then, using an iterative linear least-squares technique, we obtain the magnetization characteristics of the sources. The approach was applied to a theoretical marine magnetic anomaly, with random errors, over a known source. We demonstrate the practical utility of the method using marine magnetic gradient data from Japan.

Performance Test of a Single Pulse Gun for Transverse Pressure Wave Generation (횡단압력파 발생을 위한 단일 펄스건의 압력파 성능시험)

  • Lee, Jongkwon;Song, Wooseok;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.599-606
    • /
    • 2019
  • The pulse gun device is designed to identify the transverse pressure wave propagation/damping mechanism into the combustion flow field and in the combustion chamber according to the arrangement of multiple injectors. The manufactured pulse gun was tested to verify operability at the target combustion pressure and control of the pressure wave intensity. Gas nitrogen was used to pressurize the high-pressure tube and an OHP film of $100{\mu}m$ thickness was used for the diaphragm. To check the speed and intensity of the pressure waves, the dynamic and static pressure were measured using the pressure transducer. The performance test confirmed that the manufactured pulse gun can generate pressure waves with transverse characteristics that can be controled for strength depending on the supply pressure.