• 제목/요약/키워드: state trajectory

검색결과 281건 처리시간 0.024초

Moving Object Trajectory based on Kohenen Network for Efficient Navigation of Mobile Robot

  • Jin, Tae-Seok
    • Journal of information and communication convergence engineering
    • /
    • 제7권2호
    • /
    • pp.119-124
    • /
    • 2009
  • In this paper, we propose a novel approach to estimating the real-time moving trajectory of an object is proposed in this paper. The object's position is obtained from the image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the uncertainties and noises residing in the input data, a Extended Kalman Filter(EKF) and neural networks are utilized cooperatively. Since the EKF needs to approximate a nonlinear system into a linear model in order to estimate the states, there still exist errors as well as uncertainties. To resolve this problem, in this approach the Kohonen networks, which have a high adaptability to the memory of the input-output relationship, are utilized for the nonlinear region. In addition to this, the Kohonen network, as a sort of neural network, can effectively adapt to the dynamic variations and become robust against noises. This approach is derived from the observation that the Kohonen network is a type of self-organized map and is spatially oriented, which makes it suitable for determining the trajectories of moving objects. The superiority of the proposed algorithm compared with the EKF is demonstrated through real experiments.

A Study on Kohenen Network based on Path Determination for Efficient Moving Trajectory on Mobile Robot

  • Jin, Tae-Seok;Tack, HanHo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권2호
    • /
    • pp.101-106
    • /
    • 2010
  • We propose an approach to estimate the real-time moving trajectory of an object in this paper. The object's position is obtained from the image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the uncertainties and noises residing in the input data, a Extended Kalman Filter(EKF) and neural networks are utilized cooperatively. Since the EKF needs to approximate a nonlinear system into a linear model in order to estimate the states, there still exist errors as well as uncertainties. To resolve this problem, in this approach the Kohonen networks, which have a high adaptability to the memory of the inputoutput relationship, are utilized for the nonlinear region. In addition to this, the Kohonen network, as a sort of neural network, can effectively adapt to the dynamic variations and become robust against noises. This approach is derived from the observation that the Kohonen network is a type of self-organized map and is spatially oriented, which makes it suitable for determining the trajectories of moving objects. The superiority of the proposed algorithm compared with the EKF is demonstrated through real experiments.

커넥터 조립을 위한 강화학습 기반의 탐색 궤적 생성 및 로봇의 임피던스 강성 조절 방법 (Reinforcement Learning-based Search Trajectory Generation and Stiffness Tuning for Connector Assembly)

  • 김용건;나민우;송재복
    • 로봇학회논문지
    • /
    • 제17권4호
    • /
    • pp.455-462
    • /
    • 2022
  • Since electric connectors such as power connectors have a small assembly tolerance and have a complex shape, the assembly process is performed manually by workers. Especially, it is difficult to overcome the assembly error, and the assembly takes a long time due to the error correction process, which makes it difficult to automate the assembly task. To deal with this problem, a reinforcement learning-based assembly strategy using contact states was proposed to quickly perform the assembly process in an unstructured environment. This method learns to generate a search trajectory to quickly find a hole based on the contact state obtained from the force/torque data. It can also learn the stiffness needed to avoid excessive contact forces during assembly. To verify this proposed method, power connector assembly process was performed 200 times, and it was shown to have an assembly success rate of 100% in a translation error within ±4 mm and a rotation error within ±3.5°. Furthermore, it was verified that the assembly time was about 2.3 sec, including the search time of about 1 sec, which is faster than the previous methods.

Mode analysis and low-order dynamic modelling of the three-dimensional turbulent flow filed around a building

  • Lei Zhou;Bingchao Zhang;K.T. Tseb
    • Wind and Structures
    • /
    • 제38권5호
    • /
    • pp.381-398
    • /
    • 2024
  • This study presents a mode analysis of 3D turbulent velocity data around a square-section building model to identify the dynamic system for Kármán-type vortex shedding. Proper orthogonal decomposition (POD) was first performed to extract the significant 3D modes. Magnitude-squared coherence was then applied to detect the phase consistency between the modes, which were roughly divided into three groups. Group 1 (modes 1-4) depicted the main vortex shedding on the wake of the building, with mode 2 being controlled by the inflow fluctuation. Group 2 exhibited complex wake vortexes and single-sided vortex phenomena, while Group 3 exhibited more complicated phenomena, including flow separation. Subsequently, a third-order polynomial regression model was used to fit the dynamics system of modes 1, 3, and 4, which revealed average trend of the state trajectory. The two limit cycles of the regression model depicted the two rotation directions of Kármán-type vortex. Furthermore, two characteristic periods were identified from the trajectory generated by the regression model, which indicates fast and slow motions of the wake vortex. This study provides valuable insights into 3D mode morphology and dynamics of Kármán-type vortex shedding that helps to improve design and efficiency of structures in turbulent flow.

분절 특징 HMM을 이용한 영어 음소 인식 (English Phoneme Recognition using Segmental-Feature HMM)

  • 윤영선
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권3호
    • /
    • pp.167-179
    • /
    • 2002
  • 본 논문에서는 여러 프레임 특징으로 표현되는 분절 특징(segmental feature) 표현 방법을 제안하고, HMM 개념 위에서 음향학적 모델과 그 알고리즘을 개발하여 HMM의 약점으로 지적되는 독립관측 가정을 완화시키고자 한다. 제안된 특징 표현은 단일 프레임 특징이 음성 신호의 시간적 동적 특성 (temporal dynamics)을 제대로 표현하지 못하기 때문에, 여러 프레임을 이용하여 음성 특징을 표현하도록 한다. 분절 특징은 다항식의 회귀 함수(polynomial regression function)에 의하여 관측 벡터의 궤적으로 표현되고, 이 특징을 패턴 분류에 사용하기 위하여 음성 신호의 궤적을 효과적으로 표현하는 분절 HMM(segmental HMM)을 이용한다. SHMM은 상태에서의 관측 확률을 외적 분절 변이와 내적 분절 변이로 세분하며, 외적 분절 변이는 장기적인 변화를, 내적 분절 변이는 단기적인 변화를 나타낸다. 음향학적 모델에서 분절 특성을 고려하기 위하여 외적 분절 변이는 분절의 확률 분포로 표현하고, 내적 분절 변이는 궤적의 추정 오차로 표현하도록 SHMM을 수정한 분절 특징 HMM(SFHMM; segmental-feature HMM)을 제안한다. SFHMM에서는 분절의 관측 확률을 분절 우도와 궤적의 추정 오차의 관계로써 표현하며, 추정오차는 특정 상태에서의 분절의 우도에 대한 가중치로 고려될 수 있다. 제안된 방법의 유효성과 분절 특징의 특성을 살펴보기 위하여 TIMIT 자료를 이용하여 몇 가지 실험을 하였다. 이들 실험 결과에서, 제안된 방법이 기존의 HMM보다 매개 변수가 많더라도, 성능의 향상과 제안된 특징이 유연하고 정보를 많이 가진다는 점에서 의미가 있다고 하겠다.

Integrated System for Autonomous Proximity Operations and Docking

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.43-56
    • /
    • 2011
  • An integrated system composed of guidance, navigation and control (GNC) system for autonomous proximity operations and the docking of two spacecraft was developed. The position maneuvers were determined through the integration of the state-dependent Riccati equation formulated from nonlinear relative motion dynamics and relative navigation using rendezvous laser vision (Lidar) and a vision sensor system. In the vision sensor system, a switch between sensors was made along the approach phase in order to provide continuously effective navigation. As an extension of the rendezvous laser vision system, an automated terminal guidance scheme based on the Clohessy-Wiltshire state transition matrix was used to formulate a "V-bar hopping approach" reference trajectory. A proximity operations strategy was then adapted from the approach strategy used with the automated transfer vehicle. The attitude maneuvers, determined from a linear quadratic Gaussian-type control including quaternion based attitude estimation using star trackers or a vision sensor system, provided precise attitude control and robustness under uncertainties in the moments of inertia and external disturbances. These functions were then integrated into an autonomous GNC system that can perform proximity operations and meet all conditions for successful docking. A six-degree of freedom simulation was used to demonstrate the effectiveness of the integrated system.

컨베이어 추적을 위한 로보트 매니퓰레이터의 동적계획 (Motion Planning of a Robot Manipulator for Conveyor Tracking)

  • 박태형;이범희;고명삼
    • 대한전기학회논문지
    • /
    • 제38권12호
    • /
    • pp.995-1006
    • /
    • 1989
  • 로보트 매니퓰레이터가 컨베이어 상의 파트를 추적 하면서 작업을 수행하는 것은 작업 효율의 증가에 크게 기여한다. 본 논문은 컨베이어 상의 파트를 추적하기 위한 로보트 매니퓰레이터의 동작계획 알고리즘을 제안한다. 로보트 매니퓰레이터의 추적 동작은 밸트의 속도, 추적 시작 시간에서의 파트와 로보트 핸드의 위체이 의하여 결정된다. 이때 토크 및 관절 속도, 관절 가속도, 관절 저크의 제한범위가 모두 고려되며, 최소의 정착시간을 갖는 추적 궤적이 생성된다. 추적 해는 linearr quadratic tracking문제로 접근하여 구한다. 로보트매니퓰레이터의 동적 방정식은 파라메터의 함수 성능 지수를 최소화 하는 동적 방정식의 해는 동적 계획법에 의하여 구한다. ${\mu}-VAX_@$에 의한 시뮬레이션 결과를 제시한다.

Determination of stress state in formation zone by central slip-line field chip

  • Toropov Andrey;Ko Sung Lim
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.24-28
    • /
    • 2005
  • Stress state of chip formation zone is one of the main problems in metal cutting mechanics. In two-dimensional case this process is usually considered as consistent shears of work material along one of several shear surfaces, separating chip from workpiece. These shear planes are assumed to be trajectories of maximum shear stress forming corresponding slip-line field. This paper suggests a new approach to the constriction of slip-line field, which implies uniform compression in chip formation zone. Based on the given model it has been found that imaginary shear line in orthogonal cutting is close to the trajectory of maximum normal stress and the problem about its determination has been considered as well. It has been shown that there is a second central slip-line field inside chip, which corresponds well to experimental data about stress distribution on tool rake face and tool-chip contact length. The suggested model would be useful in understanding mechanistic problems in machining.

An iterative learning and adaptive control scheme for a class of uncertain systems

  • Kuc, Tae-Yong;Lee, Jin-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.963-968
    • /
    • 1990
  • An iterative learning control scheme for tracking control of a class of uncertain nonlinear systems is presented. By introducing a model reference adaptive controller in the learning control structure, it is possible to achieve zero tracking of unknown system even when the upperbound of uncertainty in system dynamics is not known apriori. The adaptive controller pull the state of the system to the state of reference model via control gain adaptation at each iteration, while the learning controller attracts the model state to the desired one by synthesizing a suitable control input along with iteration numbers. In the controller role transition from the adaptive to the learning controller takes place in gradually as learning proceeds. Another feature of this control scheme is that robustness to bounded input disturbances is guaranteed by the linear controller in the feedback loop of the learning control scheme. In addition, since the proposed controller does not require any knowledge of the dynamic parameters of the system, it is flexible under uncertain environments. With these facts, computational easiness makes the learning scheme more feasible. Computer simulation results for the dynamic control of a two-axis robot manipulator shows a good performance of the scheme in relatively high speed operation of trajectory tracking.

  • PDF

모델예측제어 기법을 이용한 제지공정에서의 지종교체 제어 (Control of Grade Change Operations in Paper Plants Using Model Predictive Control Method)

  • 김도훈;여영구;박시한;강홍
    • 펄프종이기술
    • /
    • 제35권4호
    • /
    • pp.48-56
    • /
    • 2003
  • In this work an integrated model for paper plants combining wet-end and dry section is developed and a model predictive control scheme based on the plant model is proposed. Closed-loop process identification method is employed to produce a state-space model. Thick stock, filler flow, machine speed and steam pressure are selected as input variables and basis weight, ash content and moisture content are considered as output variables. The desired output trajectory is constructed in the form of 1st-order dynamics. Results of simulations for control of grade change operations are compared with plant operation data collected during the grade change operations under the same conditions as in simulations. From the comparison, we can see that the proposed model predictive control scheme reduces the grade change time and achieves stable steady-state.