Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.10
/
pp.1323-1329
/
2021
For hand expression recognition, hand pose recognition based on the static shape of the hand and hand gesture recognition based on the dynamic hand movement are used together. In this paper, we propose a hierarchical hand pose model based on finger position and shape for hand expression recognition. For hand pose recognition, a finger model representing the finger state and a hand pose model using the finger state are hierarchically constructed, which is based on the open source MediaPipe. The finger model is also hierarchically constructed using the bending of one finger and the touch of two fingers. The proposed model can be used for various applications of transmitting information through hands, and its usefulness was verified by applying it to number recognition in sign language. The proposed model is expected to have various applications in the user interface of computers other than sign language recognition.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.9
/
pp.3762-3781
/
2020
Infrared pedestrian target recognition is a vital problem of significant interest in computer vision. In this work, a novel infrared pedestrian target recognition method that uses heterogeneous features with multi-kernel transfer learning is proposed. Firstly, to exploit the characteristics of infrared pedestrian targets fully, a novel multi-scale monogenic filtering-based completed local binary pattern descriptor, referred to as MSMF-CLBP, is designed to extract the texture information, and then an improved histogram of oriented gradient-fisher vector descriptor, referred to as HOG-FV, is proposed to extract the shape information. Second, to enrich the semantic content of feature expression, these two heterogeneous features are integrated to get more complete representation for infrared pedestrian targets. Third, to overcome the defects, such as poor generalization, scarcity of tagged infrared samples, distributional and semantic deviations between the training and testing samples, of the state-of-the-art classifiers, an effective multi-kernel transfer learning classifier called MK-TrAdaBoost is designed. Experimental results show that the proposed method outperforms many state-of-the-art recognition approaches for infrared pedestrian targets.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.1
/
pp.272-287
/
2017
This paper proposes new methods, named Derivative Code (DerivativeCode) and Derivative Code Pattern (DCP), for object recognition. The discriminative derivative code is used to capture the local relationship in the input image by concatenating binary results of the mathematical derivative value. Gabor based DerivativeCode is directly used to solve the palmprint recognition problem, which achieves a much better performance than the state-of-art results on the PolyU palmprint database. A new local pattern method, named Derivative Code Pattern (DCP), is further introduced to calculate the local pattern feature based on Dervativecode for object recognition. Similar to local binary pattern (LBP), DCP can be further combined with Gabor features and modeled by spatial histogram. To evaluate the performance of DCP and Gabor-DCP, we test them on the FERET and PolyU infrared face databases, and experimental results show that the proposed method achieves a better result than LBP and some state-of-the-arts.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.42
no.6
/
pp.167-176
/
2005
This paper describes how the state tying model based on the decision tree which is one of Acoustic models used for speech recognition optimizes the model by reducing the number of mixture Gaussians of the output probability distribution. The state tying modeling uses a finite set of questions which is possible to include the phonological knowledge and the likelihood based decision criteria. And the recognition rate can be improved by increasing the number of mixture Gaussians of the output probability distribution. In this paper, we'll reduce the number of mixture Gaussians at the highest point of recognition rate by clustering the Gaussians. Bhattacharyya and Euclidean method will be used for the distance measure needed when clustering. And after calculating the mean and variance between the pair of lowest distance, the new Gaussians are created. The parameters for the new Gaussians are derived from the parameters of the Gaussians from which it is born. Experiments have been performed using the STOCKNAME (1,680) databases. And the test results show that the proposed method using Bhattacharyya distance measure maintains their recognition rate at $97.2\%$ and reduces the ratio of the number of mixture Gaussians by $1.0\%$. And the method using Euclidean distance measure shows that it maintains the recognition rate at $96.9\%$ and reduces the ratio of the number of mixture Gaussians by $1.0\%$. Then the methods can optimize the state tying model.
Journal of Institute of Control, Robotics and Systems
/
v.13
no.9
/
pp.825-831
/
2007
In this paper, an interface between a human and a computer is presented. The human and computer interface(HCI) serves as another area of human and machine interfaces. Methods for the HCI we used are voice recognition and image recognition for detecting human's emotional feelings. The idea is that the computer can recognize the present emotional state of the human operator, and amuses him/her in various ways such as turning on musics, searching webs, and talking. For the image recognition process, the human face is captured, and eye and mouth are selected from the facial image for recognition. To train images of the mouth, we use the Hopfield Net. The results show 88%$\sim$92% recognition of the emotion. For the vocal recognition, neural network shows 80%$\sim$98% recognition of voice.
The most powerful and modern face recognition techniques are using deep learning methods that have provided impressive performance. The outbreak of COVID-19 pneumonia has spread worldwide, and people have begun to wear a face mask to prevent the spread of the virus, which has led existing face recognition methods to fail to identify people. Mainly, it pushes masked face recognition has become one of the most challenging problems in the face recognition domain. However, deep learning methods require numerous data samples, and it is challenging to find benchmarks of masked face datasets available to the public. In this work, we develop a new simulated masked face dataset that we can use for masked face recognition tasks. To evaluate the usability of the proposed dataset, we also retrained the dataset with ArcFace based system, which is one the most popular state-of-the-art face recognition methods.
In this paper, we present an approach for facial expression recognition using Active Shape Models(ASM) and a state-based model in image sequences. Given an image frame, we use ASM to obtain the shape parameter vector of the model while we locate facial feature points. Then, we can obtain the shape parameter vector set for all the frames of an image sequence. This vector set is converted into a state vector which is one of the three states by the state-based model. In the classification step, we use the k-NN with the proposed similarity measure that is motivated on the observation that the variation-regions of an expression sequence are different from those of other expression sequences. In the experiment with the public database KCFD, we demonstrate that the proposed measure slightly outperforms the binary measure in which the recognition performance of the k-NN with the proposed measure and the existing binary measure show 89.1% and 86.2% respectively when k is 1.
Vision-based Human computer interaction is an emerging field of science and industry to provide natural way to communicate with human and computer. In that sense, inferring the emotional state of the person based on the facial expression recognition is an important issue. In this paper, we present a novel approach to recognize facial expression from a sequence of input images using emotional specific HMM (Hidden Markov Model) and facial motion tracking based on optical flow. Conventionally, in the HMM which consists of basic emotional states, it is considered natural that transitions between emotions are imposed to pass through neutral state. However, in this work we propose an enhanced transition framework model which consists of transitions between each emotional state without passing through neutral state in addition to a traditional transition model. For the localization of facial features from video sequence we exploit template matching and optical flow. The facial feature displacements traced by the optical flow are used for input parameters to HMM for facial expression recognition. From the experiment, we can prove that the proposed framework can effectively recognize the facial expression in real time.
Journal of Korea Society of Digital Industry and Information Management
/
v.12
no.4
/
pp.1-12
/
2016
Digital imaging technology has developed into a state-of-the-art IT convergence, composite industry beyond the limits of the multimedia industry, especially in the field of smart object recognition, face - Application developed various techniques have been actively studied in conjunction with the phone. Recently, face recognition technology through the object recognition technology and evolved into intelligent video detection recognition technology, image recognition technology object detection recognition process applies to skills through is applied to the IP camera, the image object recognition technology with face recognition and active research have. In this paper, we first propose the necessary technical elements of the human factor technology trends and look at the human object recognition based spFACS (Smile Progress Facial Action Coding System) for detecting smiles study plan of the image recognition technology recognizes objects. Study scheme 1). ASM algorithm. By suggesting ways to effectively evaluate psychological research skills through the image object 2). By applying the result via the face recognition object to the tooth area it is detected in accordance with the recognized facial expression recognition of a person demonstrated the effect of extracting the feature points.
This paper describes the development and evaluation of a Korean address input system employing automatic speech recognition technique as user interface for input Korean address. Address consists of cities, provinces and counties. The system works on a window 95 environment of personal computer with built-in soundcard. In the speech recognition part, the Continuous density Hidden Markov Model(CHMM) for making phoneme like units(PLUs) and One Pass Dynamic Programming(OPDP) algorithm is used for recognition. For address recognition, Finite State Automata(FSA) suitable for Korean address structure is constructed. To achieve an acceptable performance against the variation of speakers, microphones, and environmental noises, Maximum a posteriori(MAP) estimation is implemented in adaptation. And to improve the recognition speed, fast search method using variable pruning threshold is newly proposed. In the evaluation tests conducted for the 100 connected words uttered by 3 males the system showed above average 96.0% of recognition accuracy for connected words after adaption and recognition speed within 2 seconds, showing the effectiveness of the system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.