• 제목/요약/키워드: state of charge estimation

검색결과 118건 처리시간 0.025초

State-of-charge Estimation for Lithium-ion Battery using a Combined Method

  • Li, Guidan;Peng, Kai;Li, Bin
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.129-136
    • /
    • 2018
  • An accurate state-of-charge (SOC) estimation ensures the reliable and efficient operation of a lithium-ion battery management system. On the basis of a combined electrochemical model, this study adopts the forgetting factor least squares algorithm to identify battery parameters and eliminate the influence of test conditions. Then, it implements online SOC estimation with high accuracy and low run time by utilizing the low computational complexity of the unscented Kalman filter (UKF) and the rapid convergence of a particle filter (PF). The PF algorithm is adopted to decrease convergence time when the initial error is large; otherwise, the UKF algorithm is used to approximate the actual SOC with low computational complexity. The effect of the number of sampling particles in the PF is also evaluated. Finally, experimental results are used to verify the superiority of the combined method over other individual algorithms.

3상 AC-DC 승압형 컨버터를 이용한 SOC 추정 기반의 효율적 배터리 충전 알고리즘 (An Efficient Battery Charging Algorithm based on State-of-Charge Estimation using 3-Phase AC-DC Boost Converter)

  • 이정효;원충연
    • 조명전기설비학회논문지
    • /
    • 제29권9호
    • /
    • pp.96-102
    • /
    • 2015
  • This paper presents battery charging method using 3-phase AC-DC boost converter. General battery charging method is that charging the battery voltage to the reference voltage according to the constant current(CC) control, when it reaches the reference voltage, charging the battery fully according to the constant voltage(CV) control. However, battery chaging time is increased because of the battery impedance, constant current charging section which shoud take the large amount of charge is narrow, and constant voltage charging section which can generate insufficient charge is widen. To improve this problem, we proposes the method to reduce the charging time according to the SOC(State of Charge) estimation using battery impedance.

State Estimation Technique for VRLA Batteries for Automotive Applications

  • Duong, Van Huan;Tran, Ngoc Tham;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.238-248
    • /
    • 2016
  • The state-of-charge (SOC) and state-of-health (SOH) estimation of batteries play important roles in managing batteries for automotive applications. However, an accurate state estimation of a battery is difficult to achieve because of certain factors, such as measurement noise, highly nonlinear characteristics, strong hysteresis phenomenon, and diffusion effect of batteries. In certain vehicular applications, such as idle stop-start systems (ISSs), significant errors in SOC/SOH estimation may lead to a failure in restarting a combustion engine after the shut-off period of the engine when the vehicle is at rest, such as at a traffic light. In this paper, a dual extended Kalman filter algorithm with a dynamic equivalent circuit model of a lead-acid battery is proposed to deal with this problem. The proposed algorithm adopts a battery model by taking into account the hysteresis phenomenon, diffusion effect, and parameter variations for accurate state estimations of the battery. The validity of the proposed algorithm is verified through experiments by using an absorbed glass mat valve-regulated lead-acid battery and a battery sensor cable for commercial ISS vehicles.

PI 상태관측기를 이용한 리튬폴리머 배터리 SOC 추정 (The State of Charge Estimation for Lithium-Polymer Battery using a PI Observer)

  • 이준원;조종민;김성수;차한주
    • 전력전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.175-181
    • /
    • 2015
  • In this study, a lithium polymer battery (LiPB) is simply expressed by a primary RC equivalent model. The PI state observer is designed in Matlab/Simulink. The non-linear relationship with the OCV-SOC is represented to be linearized with 0.1 pu intervals by using battery parameters obtained by constant-current pulse discharge. A state equation is configured based on battery parameters. The state equation, which applied Peukert's law, can estimate SOC more accurately. SOC estimation capability was analyzed by utilizing reduced Federal Test Procedure (FTP-72) current profile and using a bi-directional DC-DC converter at temperature ($25^{\circ}C$). The PI state observer, which is designed in this study, indicated a SOC estimation error rate of ${\pm}2%$ in any of the initial SOC states. The PI state observer confirms a strong SOC estimation performance despite disturbances, such as modeling errors and noise.

A Novel Sliding Mode Observer for State of Charge Estimation of EV Lithium Batteries

  • Chen, Qiaoyan;Jiang, Jiuchun;Liu, Sijia;Zhang, Caiping
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1131-1140
    • /
    • 2016
  • A simple design for a sliding mode observer is proposed for EV lithium battery SOC estimation in this paper. The proposed observer does not have the limiting conditions of existing observers. Compared to the design of previous sliding mode observers, the new observer does not require a solving matrix equation and it does not need many observers for all of the state components. As a result, it is simple in terms of calculations and convenient for engineering applications. The new observer is suitable for both time-variant and time-invariant models of battery SOC estimation, and the robustness of the new observer is proved by Liapunov stability theorem. Battery tests are performed with simulated FUDS cycles. The proposed observer is used for the SOC estimation on both unchanging parameter and changing parameter models. The estimation results show that the new observer is robust and that the estimation precision can be improved base on a more accurate battery model.

전류적산법과 OCV 방법을 결합한 Li-Ion 배터리의 충전상태 추정 (State of Charge Estimation of Li-Ion Battery Based on CIM and OCV Using Extended Kalman Filter)

  • 박정호;차왕철;조욱래;김재철
    • 조명전기설비학회논문지
    • /
    • 제28권11호
    • /
    • pp.77-83
    • /
    • 2014
  • The Estimation of State of Charge(SOC) for batteries is an important aspect of a Battery Management System(BMS). A method for estimating the SOC is proposed in order to overcome the individual disadvantages of the current integral and Open Circuit Voltage(OCV) estimation methods by combining them using Extended Kalman filter(EKF). The non-linear characteristics of the Li-Ion RC battery model used in this study is also solved through EKF. The proposed method is simulated in a Matlab environment with a Li-Ion Kokam battery (3.7V, 1,500mAh). Results showed that there is an improvement in the estimation error when using the proposed model compared to the conventional current integral method.

SOC 추정을 위한 밀폐형 Flooded 연축전지의 히스테리시스 모델링 (Hysteresis Modeling of the Sealed Flooded Lead Acid Battery for SOC Estimation)

  • 압둘바싯칸;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.309-310
    • /
    • 2016
  • Sealed flooded lead acid batteries are becoming popular in the industry because of their low cost as compared to their counterparts. State of Charge (SOC) estimation has always been an important factor in battery management systems. For the accurate SOC estimation, open circuit voltage (OCV) hysteresis should be modelled accurately. The hysteresis phenomenon of the sealed flooded lead acid battery is discussed in detail and its ultimate modeling is proposed based on the conventional parallelogram method. The SOC estimation is performed by using Unscented Kalman Filter (UKF) while the parameters of the battery are estimated using Auto Regressive with external input (ARX) method. The validity of the proposed method is verified by the experimental results. The SOC estimation error by the proposed method is less than 3 % all wing the 125hr test.

  • PDF

잔존충전용량 추정을 위한 퍼지 H 필터 설계 (A Fuzzy H Filter Design for State of Charge Estimation)

  • 류석환;오설동
    • 한국지능시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.214-219
    • /
    • 2010
  • 본 논문은 리튬폴리머 배터리의 잔존충전용량 추정을 위한 비선형 퍼지 $H_{\infty}$ 필터의 설계 방법을 제시한다. 배터리 셀의 동적방정식을 T-S 퍼지시스템으로 모델하고 선형행렬 부등식의 해를 이용하여 퍼지필터를 설계한다. 제시한 퍼지 $H_{\infty}$ 필터의 성능을 입증하기 위하여 UDDS 전류 프로파일을 사용한 실험 데이터를 이용하여 모의실험을 수행하였다.