• Title/Summary/Keyword: state monitoring

Search Result 1,579, Processing Time 0.044 seconds

SOx Process Simulation, Monitoring, and Pattern Classification in a Power Plant (발전소에서의 SOx 공정 모사, 모니터링 및 패턴 분류)

  • 최상욱;유창규;이인범
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.827-832
    • /
    • 2002
  • We propose a prediction method of the pollutant and a synchronous classification of the current state of SOx emission in the power plant. We use the auto-regressive with exogeneous (ARX) model as a predictor of SOx emission and use a radial basis function network (RBFN) as a pattem classifier. The ARX modeling scheme is implemented using recursive least squares (RLS) method to update the model parameters adaptively. The capability of SOx emission monitoring is utilized with the application of the RBFN classifier. Experimental results show that the ARX model can predict the SOx emission concentration well and ARX modeling parameters can be a good feature for the state monitoring. in addition, its validity has been verified through the power spectrum analysis. Consequently, the RBFN classifier in combination with ARX model is shown to be quite adequate for monitoring the state of SOx emission.

Chamber Monitoring with Residual Gas Analysis with Self-Plasma Optical Emission Spectroscopy

  • Jang, Hae-Gyu;Lee, Hak-Seung;Park, Jeong-Geon;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.262.2-262.2
    • /
    • 2014
  • Plasma processing is an essential process for pattern etching and thin film deposition in nanoscale semiconductor device fabrication. It is necessary to maintain plasma chamber in steady-state in production. In this study, we determined plasma chamber state with residual gas analysis with self-plasma optical emission spectroscopy. Residual gas monitoring of fluorocarbon plasma etching chamber was performed with self-plasma optical emission spectroscopy (SPOES) and various chemical elements was identified with a SPOES system which is composed of small inductive coupled plasma chamber for glow discharge and optical emission spectroscopy monitoring system for measuring optical emission. This work demonstrates that chamber state can be monitored with SPOES and this technique can potentially help maintenance in production lines.

  • PDF

Development of In process Condition Monitoring System on Turning Process using Artificial Neural Network. (신경회로망 모델을 이용한 선삭 공정의 실시간 이상진단 시스템의 개발)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.14-21
    • /
    • 1998
  • The in-process detection of the state of cutting tool is one of the most important technical problem in Intelligent Machining System. This paper presents a method of detecting the state of cutting tool in turning process, by using Artificial Neural Network. In order to sense the state of cutting tool. the sensor fusion of an acoustic emission sensor and a force sensor is applied in this paper. It is shown that AErms and three directional dynamic mean cutting forces are sensitive to the tool wear. Therefore the six pattern features that is, the four sensory signal features and two cutting conditions are selected for the monitoring system with Artificial Neural Network. The proposed monitoring system shows a good recogniton rate for the different cutting conditions.

  • PDF

Design and Construction of Data Monitoring System for Stable Cinder Reuse (안정적인 소각재 재활용을 위한 데이터 모니터링 시스템 설계 및 구축)

  • Kim, Gui-Jung;Han, Jung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1082-1086
    • /
    • 2007
  • This research has a purpose of constructing the data monitoring system that makes two-tier work state in the brick production factory to unification by reusing cinder. Monitoring system automatically manages data by using data managing processes such as a state managing process, a location managing process, a badness managing process, a circumstances managing process. In this research, the data management monitoring system manufactures state information of each processes received from RFID and transmits them to data monitoring system. Analyzed data through this system reuses the cinder, so it can effectively manage the production process of the factory which produces bricks through processing automation, faulty-ratio minimization, real-time monitoring and loading managing.

  • PDF

Investigation lateral deformation and failure characteristics of strip coal pillar in deep mining

  • Chen, Shaojie;Qu, Xiao;Yin, Dawei;Liu, Xingquan;Ma, Hongfa;Wang, Huaiyuan
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.421-428
    • /
    • 2018
  • In deep mining, the lateral deformation of strip coal pillar appears to be a new characteristic. In order to study the lateral deformation of coal-mass, a monitoring method and monitoring instrument were designed to investigate the lateral deformation of strip coal pillar in Tangkou Coalmine with the mining depth of over 1000 m. Because of without influence of repeated mining, the bedding sandstone roof is easy to break and the angle between maximum horizontal stress and the roadway is small, the maximum lateral deformation is only about 287 mm lower than the other pillars in the same coalmine. In deep mining, the energy accumulation and release cause a discontinuous damage in the heterogeneous coal-mass, and the lateral deformation of coal pillar shows discontinuity, step and mutation characters. These coal-masses not only show a higher plasticity but also the high brittleness at the same time, and its burst tendency is more obvious. According to the monitoring results and theoretical calculations, the yield zone of the coal pillar width is determined as 15.6 m. The monitoring results presented through this study are of great significance to the stability analysis and design of coal pillar.

State Monitoring of Micro-Grooving using AE Signal (AE신호를 이용한 micro-grooving의 상태감시)

  • 이희석;손성민;김성렬;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.332-335
    • /
    • 1997
  • With the advance of precision technique, the optical system is more precise and complex and the machining method of optical element which is composed of micro-grooves is developed. Especially, the method of micro-grooving using diamond tool is used widely owing to many merit, but has problems of damage of surface roughness due to tool wear and tool fracture. This paper deals with state monitoring using AE RMS in the micro-grooving. The change of AE RMS is very small with increment of cutting velocity and depth of cut. In spite of constance magnitude of principal force in machining using diamond tool of tool wear and tool fracture, AE RMS is highly fluctuated. Because changing of cutting state has relevance to surface roughness profile, surface toughness profile is expected using AE RMS.

  • PDF

Marine Engine State Monitoring System using DPQ in CAN Network (CAN의 분산 선행대기 열 기법을 이용한 선박 엔진 모니터링 시스템)

  • Lee, Hyun;Lee, Jun-Seok;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • This paper proposes a marine engine state monitoring system using a DPQ (Distributed Precedence Queue) mechanism which collects the state of bearings, temperature and pressure of engine through the CAN network. The CAN is developed by Bosch Corp. in the early 1980' for automobile network. The data from various sensors attached in the marine engine are converted to digital by the analog to digital converter and formatted to fit the CAN protocol at the CAN module. All the CAN modules are connected to the SPU (Signal Processing Unit) module for the efficient communication and processing. This design reduces the cost for wiring and improves the data transmission reliability by recognizing the sensor errors and data transmission errors. The DPQ mechanism is newly developed for the performance improvement of the marine engine system, which is demonstrated through the experiments.

Polishing Surface State Monitoring of Automatic Polishing Process Using Acoustic Emission Signal (AE 신호를 이용한 자동 연마가공에서의 연마면 상태감시)

  • 김동환
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.8-13
    • /
    • 2000
  • Die polishing technology is very critical to determine quality and performance of the final products. Die polishing processes have not been automated because the automation requires a great deal of experience and skill of experts. Thus, to implement a fully automated polishing process, the development of polishing status monitoring system replacing the skill of experts is critical. AE is known to be closely related to material removal rate(MRR). As the surface is rougher, MRR gets larger and AE increased. The surface roughness can be indirectly estimated using the AE signal measured during automatic die polishing process. In this study, The polishing state monitoring system using AEms signal was developed. This system can be not only to monitor the abnormal state but also to estimate a state of surface roughness of polishing surface qualitatively.

  • PDF

Development of a Greenhouse Monitoring System Using Network (네트워크를 이용한 온실 감시 시스템의 개발)

  • 임정호;류관희;진제용
    • Journal of Biosystems Engineering
    • /
    • v.28 no.1
    • /
    • pp.53-58
    • /
    • 2003
  • This study was carried out to design, construct, and test a greenhouse monitoring system fur the environment and status of control devices in a greenhouse from a remote site using internet. The measuring items selected out of many environmental factors were temperature, humidity, solar radiation, CO$_2$, SOx, NOx concentration, EC, pH of nutrient solution, the state of control devices, and the image of greenhouse. The developed greenhouse monitoring system was composed of the network system and the measuring module. The network system consists of the three kinds of monitors named the Croup Monitor. the Client Monitor and the Server Monitor. The results of the study are summarized as follows. 1. The measuring module named the House Monitor. which is used to watch the state of the control device and the environment of the greenhouse, was developed to a embedded monitoring module using one chip microprocessor 2. For all measuring items. the House Monitor showed a satisfactory accuracy within the range of ${\pm}$0.3%FS. The House Monitors were connected to the Croup Monitor by communication method of RS-485 type and could operate under power and communication fault condition within 10 hours. The Croup Monitor was developed to receive and display measurement data received from the House Monitors and to control the greenhouse environmental devices. 3. The images of the plants inside greenhouse were captured by PC camera and sent to the Group Monitor. The greenhouse manager was able to monitor the growth state of plants inside greenhouse without visiting individual greenhouses. 4. Remote monitoring the greenhouse environment and status of control devices was implemented in a client/server environment. The client monitor of the greenhouse manager at a remote site or other greenhouse manager was able to monitor the greenhouse environment and the state of control devices from the Server Monitor using internet.

Acoustic emission monitoring of damage progression in CFRP retrofitted RC beams

  • Nair, Archana;Cai, C.S.;Pan, Fang;Kong, Xuan
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.111-130
    • /
    • 2014
  • The increased use of carbon fiber reinforced polymer (CFRP) in retrofitting reinforced concrete (RC) members has led to the need to develop non-destructive techniques that can monitor and characterize the unique damage mechanisms exhibited by such structural systems. This paper presented the damage characterization results of six CFRP retrofitted RC beam specimens tested in the laboratory and monitored using acoustic emission (AE). The focus of this study was to continuously monitor the change in AE parameters and analyze them both qualitatively and quantitatively, when brittle failure modes such as debonding occur in these beams. Although deterioration of structural integrity was traceable and can be quantified by monitoring the AE data, individual failure mode characteristics could not be identified due to the complexity of the system failure modes. In all, AE was an effective non-destructive monitoring tool that can trace the failure progression in RC beams retrofitted with CFRP. It would be advantageous to isolate signals originating from the CFRP and concrete, leading to a more clear understanding of the progression of the brittle damage mechanism involved in such a structural system. For practical applications, future studies should focus on spectral analysis of AE data from broadband sensors and automated pattern recognition tools to classify and better correlate AE parameters to failure modes observed.