• Title/Summary/Keyword: state matrix

Search Result 1,551, Processing Time 0.031 seconds

Effects of Alloying Elements and Heat-Treatments on Abrasion Wear Behavior of High Alloyed White Cast Iron

  • Yu, Sung-Kon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.104-109
    • /
    • 2000
  • Three different white cast irons alloyed with Cr, V, Mo and W were prepared in order to study their abrasion wear behavior in as-cast and heat-treated conditions. The specimens were produced using a 15㎏-capacity high frequency induction furnace. Melts were super-heated to $1600^{\circ}C$, and poured at $1550^{\circ}C$ into Y-block pepset molds. Three combinations of the alloying elements were selected so as to obtain the different types of carbides : 3%C-10%Cr-5%Mo-5%W(alloy No. 1: $M_7C_3$ and $M_6C$), 3%C -10%V-5%Mo-5%W(alloy No. 2: MC and $M_2C$) and 3%C-17%Cr-3%V(alloy No. 3: $M_7C_3$ only). A scratching type abrasion test was carried out in the states of as-cast(AS), homogenizing(AH), air-hardening(AHF) and tempering(AHFT). First of all, the as-cast specimens were homogenized at $950^{\circ}C$ for 5h under the vacuum atmosphere. Then, they were austenitized at $1050^{\circ}C$ for 2h and followed by air-hardening in air. The air-hardened specimens were tempered at $300^{\circ}C$ for 3h. 1 ㎏ load was applied in order to contact the specimen with abrading wheel which was wound by 120 mesh SiC paper. The wear loss of the test piece(dimension: $50{\times}50{\times}5$ mm) was measured after one cycle of wear test and this procedure was repeated up to 8 cycles. In all the specimens, the abrasion wear loss was found to decrease in the order of AH, AS, AHFT and AHF states. Abrasion wear loss was lowest in the alloy No.2 and highest in the alloy No.1 except for the as-cast and homogenized condition in which the alloy No.3 showed the highest abrasion wear loss. The lowest abrasion wear loss of the alloy No.2 could be attributed to the fact that it contained primary and eutectic MC carbides, and eutectic $M_2C$ carbide with extremely high hardness. The matrix of each specimen was fully pearlitic in the as-cast state but it was transformed to martensite, tempered martensite and austenite depending upon the type of heat-treatment. From these results, it becomes clear that MC carbide is a significant phase to improve the abrasion wear resistance.

  • PDF

Hierarchical Visualization of the Space of Facial Expressions (얼굴 표정공간의 계층적 가시화)

  • Kim Sung-Ho;Jung Moon-Ryul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.12
    • /
    • pp.726-734
    • /
    • 2004
  • This paper presents a facial animation method that enables the user to select a sequence of facial frames from the facial expression space, whose level of details the user can select hierarchically Our system creates the facial expression space from about 2400 captured facial frames. To represent the state of each expression, we use the distance matrix that represents the distance between pairs of feature points on the face. The shortest trajectories are found by dynamic programming. The space of facial expressions is multidimensional. To navigate this space, we visualize the space of expressions in 2D space by using the multidimensional scaling(MDS). But because there are too many facial expressions to select from, the user faces difficulty in navigating the space. So, we visualize the space hierarchically. To partition the space into a hierarchy of subspaces, we use fuzzy clustering. In the beginning, the system creates about 10 clusters from the space of 2400 facial expressions. Every tine the level increases, the system doubles the number of clusters. The cluster centers are displayed on 2D screen and are used as candidate key frames for key frame animation. The user selects new key frames along the navigation path of the previous level. At the maximum level, the user completes key frame specification. We let animators use the system to create example animations, and evaluate the system based on the results.

A News Video Mining based on Multi-modal Approach and Text Mining (멀티모달 방법론과 텍스트 마이닝 기반의 뉴스 비디오 마이닝)

  • Lee, Han-Sung;Im, Young-Hee;Yu, Jae-Hak;Oh, Seung-Geun;Park, Dai-Hee
    • Journal of KIISE:Databases
    • /
    • v.37 no.3
    • /
    • pp.127-136
    • /
    • 2010
  • With rapid growth of information and computer communication technologies, the numbers of digital documents including multimedia data have been recently exploded. In particular, news video database and news video mining have became the subject of extensive research, to develop effective and efficient tools for manipulation and analysis of news videos, because of their information richness. However, many research focus on browsing, retrieval and summarization of news videos. Up to date, it is a relatively early state to discover and to analyse the plentiful latent semantic knowledge from news videos. In this paper, we propose the news video mining system based on multi-modal approach and text mining, which uses the visual-textual information of news video clips and their scripts. The proposed system systematically constructs a taxonomy of news video stories in automatic manner with hierarchical clustering algorithm which is one of text mining methods. Then, it multilaterally analyzes the topics of news video stories by means of time-cluster trend graph, weighted cluster growth index, and network analysis. To clarify the validity of our approach, we analyzed the news videos on "The Second Summit of South and North Korea in 2007".

Proposan and Analysis of DR(Distributed Reflector)-LD/EA(electro-absorption)­Modulator Integrated Device (분포반사기 레이저 다이오드와 광흡수 변조기가 집적된 소자의 제안 및 해석)

  • 권오기;심종인
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.5
    • /
    • pp.333-341
    • /
    • 1998
  • The novel integrated device, 1.55 ${\mu}{\textrm}{m}$ DR-LD(distrbuted reflector laser diode) integrated EA-MOD (electro-absorption modulator) as light source, is proposed to improve the device yield and its operational performances. This device can be easily fabricated by the selective MOVPE technique and its fabrication processes are almost the same as the reported 1.55 ${\mu}{\textrm}{m}$ DFB-LD(distributed feedback laser diode) integrated EA-MOD except the asymmetric gratings. The static and dynamic properties are investigated simultaneously by solving the transfer matrix method for light propagation, the time-dependent rate equation for carrier change and schr$\"{o}$dinger equation for QCSE (Quantum-Confined Stark Effect). The performances of the proposed device such as output power, chirp, and extinction ratio are compared with those of DFB-LD integrated EA-MOD. Under 10Gb/s NRZ modulation, we obtain that DR-LD integrated EA-MOD. is 30% higher in output power on the on-state, about 50% lower in chirp, and slightly larger in extinction ratio than DFB-LD integrated EA-MOD.-MOD.

  • PDF

Methylation Levels of LINE-1 As a Useful Marker for Venous Invasion in Both FFPE and Frozen Tumor Tissues of Gastric Cancer

  • Min, Jimin;Choi, Boram;Han, Tae-Su;Lee, Hyuk-Joon;Kong, Seong-Ho;Suh, Yun-Suhk;Kim, Tae-Han;Choe, Hwi-Nyeong;Kim, Woo Ho;Hur, Keun;Yang, Han-Kwang
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.346-354
    • /
    • 2017
  • Long interspersed nuclear element-1 (LINE-1) is a retrotransposon that contains a CpG island in its 5'-untranslated region. The CpG island of LINE-1 is often heavily methylated in normal somatic cells, which is associated with poor prognosis in various cancers. DNA methylation can differ between formalin-fixed paraffin-embedded (FFPE) and frozen tissues. Therefore, this study aimed to compare the LINE-1 methylation status between the two tissue-storage conditions in gastric cancer (GC) clinical samples and to evaluate whether LINE-1 can be used as an independent prognostic marker for each tissue-storage type. We analyzed four CpG sites of LINE-1 and examined the methylation levels at these sites in 25 FFPE and 41 frozen GC tissues by quantitative bisulfite pyrosequencing. The LINE-1 methylation status was significantly different between the FFPE and frozen GC tissues (p < 0.001). We further analyzed the clinicopathological features in the two groups separately. In the frozen GC tissues, LINE-1 was significantly hypomethylated in GC tissues compared to their corresponding normal gastric mucosa tissues (p < 0.001), and its methylation status was associated with gender, differentiation state, and lymphatic and venous invasion of GC. In the FFPE GC tissues, the methylation levels of LINE-1 differed according to tumor location and venous invasion of GC. In conclusion, LINE-1 can be used as a useful methylation marker for venous invasion in both FFPE and frozen tumor tissues of GC.

The Improvement of maintainability evaluation method at system level using system component information and fuzzy technique (시스템의 구성품 정보와 퍼지 기법을 활용한 시스템 수준 정비도 평가 방법의 개선)

  • Yoo, Yeon-Yong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.100-109
    • /
    • 2019
  • Maintainability indicates the extent to which maintenance can be done easily and quickly. The consideration of maintainability is crucial to reduce the operation and support costs of weapon systems, but if the maintainability is evaluated after the prototype production is done and necessitates design changes, it may increase the cost and delay the schedule. The evaluation should verify whether maintenance work can be performed, and support the designers in developing a design to improve maintainability. In previous studies, the maintainability index was calculated using the graph theory at the early design phase, but evaluation accuracy appeared to be limited. Analyzing the methods of evaluating the maintainability using fuzzy logic and 3D modeling indicate that the design of a system with good maintainability should be done in an integrated manner during the whole system life cycle. This paper proposes a method to evaluate maintainability using SysML-based modeling and simulation technique and fuzzy logic. The physical design structure with maintainability attributes was modeled using SysML 'bdd' diagram, and the maintainability was represented by an AHP matrix for maintainability attributes. We then calculated the maintainability using AHP-based weighting calculation and fuzzy logic through the use of SysML 'par' diagram that incorporated MATLAB. The proposed maintainability model can be managed efficiently and consistently, and the state of system design and maintainability can be analyzed quantitatively, thereby improving design by early identifying the items with low maintainability.

Study on Electrochemical Performances of PEO-based Composite Electrolyte by Contents of Oxide Solid Electrolyte (산화물계 고체전해질 함량에 따른 PEO 기반 복합전해질 전기화학 성능 연구)

  • Lee, Myeong Ju;Kim, Ju Young;Oh, Jimin;Kim, Ju Mi;Kim, Kwang Man;Lee, Young-Gi;Shin, Dong Ok
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.80-87
    • /
    • 2018
  • Safety issues in Li-ion battery system have been prime concerns, as demands for power supply device applicable to wearable device, electrical vehicles and energy storage system have increased. To solve safety problems, promising strategy is to replace organic liquid electrolyte with non-flammable solid electrolyte, leading to the development of all-solid-state battery. However, relative low conductivity and high resistance from rigid solid-solid interface hinder a wide application of solid electrolyte. Composite electrolytes composed of organic and inorganic parts could be alternative solution, which in turn bring about the increase of conductivity and conformal contact at physically rough interfaces. In our study, composite electrolytes were prepared by combining poly(ethylene oxide)(PEO) and $Li_7La_3Zr_2O_{12}$ (LLZO). The crystallinity, morphology and electrochemical performances were investigated with the control of LLZO contents from 0 wt% to 50 wt%. From the results, it is concluded that optimum content and uniform dispersion of LLZO in polymer matrix are significant to improve overall conductivity of composite electrolyte.

Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries (리튬이차전지용 고체 전해질의 최근 진전과 전망)

  • Kim, Jumi;Oh, Jimin;Kim, Ju Young;Lee, Young-Gi;Kim, Kwang Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.87-103
    • /
    • 2019
  • Nonaqueous organic electrolyte solution in commercially available lithium-ion batteries, due to its flammability, corrosiveness, high volatility, and thermal instability, is demanding to be substituted by safer solid electrolyte with higher cycle stability, which will be utilized effectively in large-scale power sources such as electric vehicles and energy storage system. Of various types of solid electrolytes, composite solid electrolytes with polymer matrix and active inorganic fillers are now most promising in achieving higher ionic conductivity and excellent interface contact. In this review, some kinds and brief history of solid electrolyte are at first introduced and consequent explanations of polymer solid electrolytes and inorganic solid electrolytes (including active and inactive fillers) are comprehensively carried out. Composite solid electrolytes including these polymer and inorganic materials are also described with their electrochemical properties in terms of filler shapes, such as particle (0D), fiber (1D), plane (2D), and solid body (3D). In particular, in all-solid-state lithium batteries using lithium metal anode, the interface characteristics are discussed in terms of cathode-electrolyte interface, anode-electrolyte interface, and interparticle interface. Finally, current requisites and future perspectives for the composite solid electrolytes are suggested by help of some decent reviews recently reported.

A Comparison Study on Reinforcement Behaviors of Functional Fillers in Nitrile Rubber Composites

  • Seong, Yoonjae;Lee, Harim;Kim, Seonhong;Yun, Chang Hyun;Park, Changsin;Nah, Changwoon;Lee, Gi-Bbeum
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.306-313
    • /
    • 2020
  • To investigate the reinforcing effects of functional fillers in nitrile rubber (NBR) materials, high-structure carbon black (HS45), coated calcium carbonate (C-CaCO3), silica (200MP), and multi-walled carbon nanotubes (MWCNTs) were used as functional filler, and carbon black (SRF) as a common filler were used for oil-resistant rubber. The curing and mechanical properties of HS45-, 200MP-, and MWCNT-filled NBR compounds were improved compared to those of the SRF-filled NBR compound. The reinforcing effect also increased with a decrease in the particle size of the fillers. The C-CaCO3-filled NBR compound exhibited no reinforcing effect with increasing filler concentration because of their large primary particle size (2 ㎛). The reinforcing behavior based on 100% modulus of the functional filler based NBR compounds was compared by using several predictive equation models. The reinforcing behavior of the C-CaCO3-filled NBR compound was in accordance with the Smallwood-Einstein equation whereas the 200MP- and MWCNT-filled NBR compounds fitted well with the modified Guth-Gold (m-Guth-Gold) equation. The SRF- and HS45-filled NBR compounds exhibited reinforcing behavior in accordance with the Guth-Gold and m-Guth-Gold equations, respectively, at a low filler content. However, the values of reinforcement parameter (100Mf/100Mu) of the SRF- and HS45-filled NBR compounds were higher than those determined by the predictive equation model at a high filler content. Because the chains of SRF composed of spherical filler particles are similarly changed to rod-like filler particles embedded in a rubber matrix and the reinforcement parameter rapidly increased with a high content of HS45, the higher-structured filler. The reinforcing effectiveness of the functional fillers was numerically evaluated on the basis of the effectiveness index (��SRF/��f) determined by the ratio of the volume fraction of the functional filler (��f) to that of the SRF filler (��SRF) at three unit of reinforcing parameter (100Mf/100Mu). On the basis of their effectiveness index, MWCNT-, 200MP-, and HS45-filled compounds showed higher reinforcing effectiveness of 420%, 70%, and 20% than that of SRF-filled compound, respectively whereas C-CaCO3-filled compound exhibited lower reinforcing effectiveness of -50% than that of SRF-filled compound.

A New Calibration of 3D Point Cloud using 3D Skeleton (3D 스켈레톤을 이용한 3D 포인트 클라우드의 캘리브레이션)

  • Park, Byung-Seo;Kang, Ji-Won;Lee, Sol;Park, Jung-Tak;Choi, Jang-Hwan;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.247-257
    • /
    • 2021
  • This paper proposes a new technique for calibrating a multi-view RGB-D camera using a 3D (dimensional) skeleton. In order to calibrate a multi-view camera, consistent feature points are required. In addition, it is necessary to acquire accurate feature points in order to obtain a high-accuracy calibration result. We use the human skeleton as a feature point to calibrate a multi-view camera. The human skeleton can be easily obtained using state-of-the-art pose estimation algorithms. We propose an RGB-D-based calibration algorithm that uses the joint coordinates of the 3D skeleton obtained through the posture estimation algorithm as a feature point. Since the human body information captured by the multi-view camera may be incomplete, the skeleton predicted based on the image information acquired through it may be incomplete. After efficiently integrating a large number of incomplete skeletons into one skeleton, multi-view cameras can be calibrated by using the integrated skeleton to obtain a camera transformation matrix. In order to increase the accuracy of the calibration, multiple skeletons are used for optimization through temporal iterations. We demonstrate through experiments that a multi-view camera can be calibrated using a large number of incomplete skeletons.