• 제목/요약/키워드: state feedback controller

검색결과 677건 처리시간 0.026초

다층 신경회로 및 역전달 학습방법에 의한 로보트 팔의 다이나믹 제어 (Dynamic Control of Robot Manipulators Using Multilayer Neural Networks and Error Backpropagation)

  • 오세영;류연식
    • 대한전기학회논문지
    • /
    • 제39권12호
    • /
    • pp.1306-1316
    • /
    • 1990
  • A controller using a multilayer neural network is proposed to the dynamic control of a PUMA 560 robot arm. This controller is developed based on an error back-propagation (BP) neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a commanded feedforward torque generator. A Proportional Derivative (PD) feedback controller is used in parallel with the feedforward neural network to train the system. The neural network was trained by the current state of the manipulator as well as the PD feedback error torque. No a priori knowledge on system dynamics is needed and this information is rather implicitly stored in the interconnection weights of the neural network. In another experiment, the neural network was trained with the current, past and future positions only without any use of velocity sensors. Form this thim window of position values, BP network implicitly filters out the velocity and acceleration components for each joint. Computer simulation demonstrates such powerful characteristics of the neurocontroller as adaptation to changing environments, robustness to sensor noise, and continuous performance improvement with self-learning.

  • PDF

비대칭형 유압 실린더를 사용한 능동현가 시스템에서의 궤한 선형화와 최적제어기법을 이용한 이득계획제어기 설계 (Gain-scheduled controller design of an Active Suspension System with an Asymmetric Hydraulic Cylinder using Feedback linearization technique & optimal)

  • 장유진;김상우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.452-454
    • /
    • 1998
  • Asymmetric cylinders are usually used as an actuator of active suspensions. The conventional optimal controller design does not include actuator dynamics as a state. and force controller is needed to track the desired force. But the actuator is not ideal, so performance of an active suspension system is degraded. In this paper, we take account nonlinear actuator dynamics and obtain a linear model using a feedback linearization technique then apply optimal control method. For real time application, gain-scheduling method is used. Effectiveness of proposed method is demonstrated by numerical simulation of 1/4 car model.

  • PDF

칼만 필터를 이용한 자기부상 시스템의 강인제어기 설계 (Design of Robust Controller for Electromagnetic Suspension System with Kalman Filter)

  • 장석명;성소영;성호경;조흥제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.1411-1413
    • /
    • 2000
  • Distubance of air-gap sensors by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension (EMS) systems. Thus, this paper proposes the output feedback controller with discrete kalman filter for the EMS systems. The discrete kalman filter estimate true state value and output feedback controller guarantee stability. The benefit of this scheme are shown by simulation. Therefore air-gap disturbance are rejected successfully.

  • PDF

Multirate 샘플링을 이용한 CDBC의 설계 (Design of a CDBC Using Multirate Sampling)

  • 김진용;김성열;이금원;이준모
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2003년도 하계학술대회 논문집
    • /
    • pp.141-144
    • /
    • 2003
  • This paper proposes a design method of a CDBC(Continuous-time Deadbeat Controller)system that takes into account the response between the sampling instant and using second-order smoothing elements. The continuous deadbeat controller is composed of a serial integral compensator and a local feedback compensator introduced into the state feedback loop. A DC servo motor is chosen for implementing CDBC algorithm. Especially according to the variable input and disturbance, corresponding CDBC design method is suggested. A Matlab Simulink is used for simulation with the Motor parameter. By computer simulations, control inputs and system outputs are shown to have desirable property such as smoothness.

  • PDF

2차 평활요소를 이용한 CDBC의 설계 (Design of a CDBC Using Second-order Smoothing Element)

  • 김진용;김성열;이금원
    • 융합신호처리학회논문지
    • /
    • 제3권1호
    • /
    • pp.67-73
    • /
    • 2002
  • 본 논문은 2차 평활요소를 사용한 최적 연속계 유한정정 서보시스템의 새로운 설계법을 제시한다. 직렬 적분 보상기와 지역 귀환보상기를 상태귀환 루프에 도입하여 연속유한정정제어기를 만든다. 평활요소의 감쇄비와 고유 각주파 수의 결정법을 서술한다. 입출력 특성이 어떻게 개선되는지를 수치예제를 통하여 보인다. 특히 임의의 시간에 인가되는 외란 및 가변 입력에 대한 CDBC를 설계하는 방법을 제시한다.

  • PDF

산업용 로봇의 유연관절 제어기 설계: Part 2 - 진동억제 제어 및 게인스케듈링 (Controller Design for Flexible Joint of Industrial Robots: Part 2 - Vibration Suppression Control and Gain-Scheduling)

  • 박종현;이상훈
    • 제어로봇시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.371-379
    • /
    • 2006
  • Increasing requirements for the high quality of industrial robot performance made the vibration control issue very important because the vibration makes it difficult to achieve quick response of robot motion and may bring mechanical damage to the robot. This paper presents a vibration control solution for industrial robots which have flexible joints. The joint flexibility is modeled as a two-mass system. And we analyze the vibration problem of a classical P-PI controller when it used for the flexible joints of industrial robots. Then a state feedback controller is designed for vibration suppression of the two-mass system. Finally, a gain-scheduling method is designed for maintaining control performance in spite of the time-varying nature of each joint's load side inertia. Simulation and experimental results show effective vibration suppression and uniform properties in overshoot in spite of the variation of load. The result of this study can be applied to the appropriate gain manipulation of many other mechatronic devices which have the two-mass system with varying load side inertia.

근접 센서를 이용한 로봇 손의 파지 충격 개선 (Grasping Impact-Improvement of Robot Hands using Proximate Sensor)

  • 홍예선;진성무
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.42-48
    • /
    • 1999
  • A control method for a robot hand grasping a object in a partially unknown environment will be proposed, where a proximate sensor detecting the distance between the fingertip and object was used. Particularly, the finger joints were driven servo-pneumatically in this study. Based on the proximate sensor signal the finger motion controller could plan the grasping process divided in three phases ; fast aproach, slow transitional contact and contact force control. That is, the fingertip approached to the object with full speed, until the output signal of the proximate sensor began to change. Within the perating range of the proximate sensor, the finger joint was moved by a state-variable feedback position controller in order to obtain a smooth contact with the object. The contact force of fingertip was then controlled using the blocked-line pressure sensitivity of the flow control servovalve for finger joint control. In this way, the grasping impact could be reduced without reducing the object approaching speed. The performance of the proposed grasping method was experimentally compared with that of a open loop-controlled one.

  • PDF

상태궤환행렬을 이용한 안정한 Fuzzy 제어기의 설계 (Design of The Stable Fuzzy Controller Using State Feedback Matrix)

  • 최승규;홍대승;고재호;유창완;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.534-536
    • /
    • 1999
  • Fuzzy Systems which are based on membership functions and rules, can control nonlinear, uncertain, complex systems well. However, Fuzzy logic controller(FLC) has problems; It is difficult to design the stable FLC and FLC depends mainly on individual experience. Although FLC can be designed using the error back-propagation algorithm, it takes long time to converge into global, optimal parameters. Well-developed linear system theory should not be replaced by FLC, but instead, it should be suitably used with FLC. A new methodology is introduced for designing THEN-PART membership functions of FLC based on its well-tuned state feedback controller. A example of inverted pendulum is given for demonstration of the robustness of proposed methodology.

  • PDF

제어기의 이득 섭동을 갖는 이산 시간지연 대규모 시스템을 위한 강인 비약성 제어기 (Decentralized Stabilization for Uncertain Discrete-Time Large-Scale Systems with Delays in Interconnections and Controller Gain Perturbations)

  • 박주현
    • 전자공학회논문지SC
    • /
    • 제39권5호
    • /
    • pp.8-17
    • /
    • 2002
  • 본 논문에서는, 섭동과 제어기 이득 섭동을 갖는 이산 대규모 시간지연 시스템의 강인 비약성 제어기 설계에 관하여 논한다. 리아프보프 해석법을 의거하여 선형행렬 부등식으로 표현되는 주어진 시스템의 강인 안정화를 꾀하는 상태 궤환 제어기의 존재를 보장하는 조건 식을 구한다. 이 조건 식의 해로부터 각 부 시스템에서의 제어기의 이득 및 제어기의 비약성 지수도 얻을 수 있다. 제시된 선형행렬 부등식은 잘 알려진 최적화 기법으로 쉽게 풀 수 있으며, 예제를 통하여 제어기 설계 방법을 보인다.

공기압 서보 시스템의 위치 제어 및 시뮬레이션에 관한 연구 (A Study on the Position Control and Simulation of Pneumatic Servo System)

  • 최서호;홍예선;이정오
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.102-113
    • /
    • 1996
  • An experimental and theoretical study on a pneumatic servo system has been conducted using on-off valves and a pneumatic cylinder. A V/I converter has been designed for rapid rising and falling of the solenoid current, which significantly improves the positioning accuracy and settling time of the servo system by shortening the valve opening time. Pulse width modulation was modified to operate on-off valves effectively. A state feedback controller which feeds back position, velocity and acceleration is used to control the system. The influence of controller gains on the system performance is studied to develop a scheme that automatically adjusts the gains using fuzzy logic theory. It is shown experimentally that the proposed fuzzy logic tuner works satisfactorily. A new method for measurements of valve effective areas is proposed, and a partially polytropic model is applied to simulation of the pneumatic system. Simulated results show good agreement with experimental data.

  • PDF