• Title/Summary/Keyword: state estimation method

Search Result 990, Processing Time 0.024 seconds

Speed Estimation of Induction Motor Using Binary Observer (이원관측기를 이용한 유도전동기의 속도추정)

  • 김상욱;나재두;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.171-176
    • /
    • 1997
  • This paper presents a design method of the continuous inertial binary observer which includes the rotor flux and speed estimations. The sliding observer based on the variable structure theory ensures the robustness of disturbance and is applied for the method to keep an insensitivity for the variations of parameter. Sliding observer, however, has a high-frequency chattering deteriorating the state estimation performance. To reduce the chattering on the sliding surface in sliding observer and improve the estimation performance, binary observer scheme which has main advantages such as the absence of high-frequency chattering and the finite gains is applied in this paper. Computer simulation results show the effectiveness of binary observer proposed here for the induction motor drives.

  • PDF

Particle filter for model updating and reliability estimation of existing structures

  • Yoshida, Ikumasa;Akiyama, Mitsuyoshi
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.103-122
    • /
    • 2013
  • It is essential to update the model with reflecting observation or inspection data for reliability estimation of existing structures. Authors proposed updated reliability analysis by using Particle Filter. We discuss how to apply the proposed method through numerical examples on reinforced concrete structures after verification of the method with hypothetical linear Gaussian problem. Reinforced concrete structures in a marine environment deteriorate with time due to chloride-induced corrosion of reinforcing bars. In the case of existing structures, it is essential to monitor the current condition such as chloride-induced corrosion and to reflect it to rational maintenance with consideration of the uncertainty. In this context, updated reliability estimation of a structure provides useful information for the rational decision. Accuracy estimation is also one of the important issues when Monte Carlo approach such as Particle Filter is adopted. Especially Particle Filter approach has a problem known as degeneracy. Effective sample size is introduced to predict the covariance of variance of limit state exceeding probabilities calculated by Particle Filter. Its validity is shown by the numerical experiments.

User Density Estimation System at Closed Space using High Frequency and Smart device

  • Chung, Myoungbeom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.49-55
    • /
    • 2017
  • Recently, for safety of people, there are proposed so many technologies which detect density of people at the specific place or space. The representative technology for crowd density estimation was using image analysis method from CCTV images. However, this method had a weakness which could not be used and which's accuracy was lower at the dark or smog space. Therefore, in this paper, to solve this problem, we proposed a user density estimation system at closed space using high frequency and smart device. The system send inaudible high frequencies to smart devices and it count the smart devices which detect the high frequencies on the space. We tested real-time user density with the proposed system and ten smart devices to evaluate performance. According to the testing results, we confirmed that the proposed system's accuracy was 95% and it was very useful. Thus, because the proposed system could estimate about user density at specific space exactly, it could be useful technology for safety of people and measurement of space use state at indoor space.

Multiple Model Adaptive Estimation of the SOC of Li-ion battery for HEV/EV (다중모델추정기법을 이용한 HEV/EV용 리튬이온전지의 잔존충전용량 추정)

  • Jung, Hae-Bong;Kim, Young-Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.142-149
    • /
    • 2011
  • This paper presents a new state of charge(SOC) estimation of large capacity of Li-ion battery (LIB) based on the multiple model adaptive estimation(MMAE) method. We first introduce an equivalent circuit model of LIB. The relationship between the terminal voltage and the open circuit voltage(OCV) is nonlinear and may vary depending on the changes of temperature and C-rate. In this paper, such behaviors are described as a set of multiple linear time invariant impedance models. Each model is identified at a temperature and a C-rate. These model set must be obtained a priori for a given LIB. It is shown that most of impedances can be modeled by first-order and second-order transfer functions. For the real time estimation, we transform the continuous time models into difference equations. Subsequently, we construct the model banks in the manner that each bank consists of four adjacent models. When an operating point of cell temperature and current is given, the corresponding model bank is directly determined so that it is included in the interval generated by four operating points of the model bank. The MMAE of SOC at an arbitrary operating point (T $^{\circ}C$, $I_{bat}$[A]) is performed by calculating a linear combination of voltage drops, which are obtained by four models of the selected model bank. The demonstration of the proposed method is shown through simulations using DUALFOIL.

Robust Reduced Order State Observer for Lipschitz Nonlinear Systems (Lipschitz 비선형 시스템의 강인 저차 상태 관측기)

  • Lee, Sung-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.837-841
    • /
    • 2008
  • This paper presents a robust reduced order state observer for a class of Lipschitz nonlinear systems with external disturbance. Sufficient conditions on the existence of the proposed observer are characterized by linear matrix inequalities. It is also shown that the proposed observer design can reduce the effect on the estimation error of external disturbance up to the prescribed level. Finally, a numerical example is provided to verify the proposed design method.

Bayesian Estimation of State-Space Model Using the Hybrid Monte Carlo within Gibbs Sampler

  • Park, Ilsu
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.203-210
    • /
    • 2003
  • In a standard Metropolis-type Monte Carlo simulation, the proposal distribution cannot be easily adapted to "local dynamics" of the target distribution. To overcome some of these difficulties, Duane et al. (1987) introduced the method of hybrid Monte Carlo(HMC) which combines the basic idea of molecular dynamics and the Metropolis acceptance-rejection rule to produce Monte Carlo samples from a given target distribution. In this paper, using the HMC within Gibbs sampler, an asymptotical estimate of the smoothing mean and a general solution to state space modeling in Bayesian framework is obtaineds obtained.

Wire Rope Fault Detection using Probability Density Estimation (확률분포추정기법을 이용한 와이어로프의 결함진단)

  • Jang, Hyeon-Seok;Lee, Young-Jin;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1758-1764
    • /
    • 2012
  • A large number of wire rope has been used in various inderstiries as Cranes and Elevators from expanding the scale of the industrial market. But now, the management of wire rope is used as manually operated by rope replacement from over time or after the accident.It is caused to major accidents as well as economic losses and personal injury. Therefore its time to need periodic fault diagnosis of wire rope or supply of real-time monitoring system. Currently, there are several methods has been reported for fault diagnosis method of the wire rope, to find out the feature point from extracting method is becoming more common compared to time wave and model-based system. This method has implemented a deterministic modeling like the observer and neural network through considering the state of the system as a deterministic signal. However, the out-put of real system has probability characteristics, and if it is used as a current method on this system, the performance will be decreased at the real time. And if the random noise is occurred from unstable measure/experiment environment in wire rope system, diagnostic criterion becomes unclear and accuracy of diagnosis becomes blurred. Thus, more sophisticated techniques are required rather than deterministic fault diagnosis algorithm. In this paper, we developed the fault diagnosis of the wire rope using probability density estimation techniques algorithm. At first, The steady-state wire rope fault signal detection is defined as the probability model through probability distribution estimate. Wire rope defects signal is detected by a hall sensor in real-time, it is estimated by proposed probability estimation algorithm. we judge whether wire rope has defection or not using the error value from comparing two probability distribution.

Pose Estimation Method Using Sensor Fusion based on Extended Kalman Filter (센서 결합을 이용한 확장 칼만 필터 기반 자세 추정 방법)

  • Yun, Inyong;Shim, Jaeryong;Kim, Joongkyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.106-114
    • /
    • 2017
  • In this paper, we propose the method of designing an extended kalman filter in order to accurately measure the position of the spatial-phase system using sensor fusion. We use the quaternion as a state variable in expressing the attitude of an object. Then, the attitude of rigid body can be calculated from the accelerometer and magnetometer by applying the Gauss-Newton method. We estimate the changes of state by using the measurements obtained from the gyroscope, the quaternion, and the vision informations by ARVR_SDK. To increase the accuracy of estimation, we designed and implemented the extended kalman filter, which showed excellent ability to adjust and compensate the sensor error. As a result, we could experimentally demonstrate that the reliability of the attitude estimation value can be significantly increased.

State of Health Estimation for Lithium-Ion Batteries Using Long-term Recurrent Convolutional Network (LRCN을 이용한 리튬 이온 배터리의 건강 상태 추정)

  • Hong, Seon-Ri;Kang, Moses;Jeong, Hak-Geun;Baek, Jong-Bok;Kim, Jong-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.183-191
    • /
    • 2021
  • A battery management system (BMS) provides some functions for ensuring safety and reliability that includes algorithms estimating battery states. Given the changes caused by various operating conditions, the state-of-health (SOH), which represents a figure of merit of the battery's ability to store and deliver energy, becomes challenging to estimate. Machine learning methods can be applied to perform accurate SOH estimation. In this study, we propose a Long-Term Recurrent Convolutional Network (LRCN) that combines the Convolutional Neural Network (CNN) and Long Short-term Memory (LSTM) to extract aging characteristics and learn temporal mechanisms. The dataset collected by the battery aging experiments of NASA PCoE is used to train models. The input dataset used part of the charging profile. The accuracy of the proposed model is compared with the CNN and LSTM models using the k-fold cross-validation technique. The proposed model achieves a low RMSE of 2.21%, which shows higher accuracy than others in SOH estimation.

Design wind speed prediction suitable for different parent sample distributions

  • Zhao, Lin;Hu, Xiaonong;Ge, Yaojun
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.423-435
    • /
    • 2021
  • Although existing algorithms can predict wind speed using historical observation data, for engineering feasibility, most use moment methods and probability density functions to estimate fitted parameters. However, extreme wind speed prediction accuracy for long-term return periods is not always dependent on how the optimized frequency distribution curves are obtained; long-term return periods emphasize general distribution effects rather than marginal distributions, which are closely related to potential extreme values. Moreover, there are different wind speed parent sample types; how to theoretically select the proper extreme value distribution is uncertain. The influence of different sampling time intervals has not been evaluated in the fitting process. To overcome these shortcomings, updated steps are introduced, involving parameter sensitivity analysis for different sampling time intervals. The extreme value prediction accuracy of unknown parent samples is also discussed. Probability analysis of mean wind is combined with estimation of the probability plot correlation coefficient and the maximum likelihood method; an iterative estimation algorithm is proposed. With the updated steps and comparison using a Monte Carlo simulation, a fitting policy suitable for different parent distributions is proposed; its feasibility is demonstrated in extreme wind speed evaluations at Longhua and Chuansha meteorological stations in Shanghai, China.