• Title/Summary/Keyword: state estimation method

Search Result 990, Processing Time 0.028 seconds

A Modulation and Channel State Estimation Algorithm Using the Received Signal Analysis in the Blind Channel (블라인드 채널에서 수신 신호 분석 기법을 사용한 변조 및 채널 상태 추정 알고리즘)

  • Cho, Minhwan;Nam, Haewoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1406-1409
    • /
    • 2016
  • In this paper, we propose the heuristic signal grouping algorithm to estimate channel state value over full blind communication situation which means that there is no information about the modulation scheme and the channel state information between the transmitter and the receiver. Hereafter, using the constellation rotation method and the probability density function(pdf) the modulation scheme is determined to perform automatic modulation classification(AMC). Furthermore, the modulation type and a channel state value estimation capability is evaluated by comparing the proposed scheme with other conventional techniques from the simulation results in terms of the symbol error rate(SER) and the root mean square error (RMSE).

Speed Estimation of Induction Motor in Steady State Using the RSH (RSH를 이용한 정상상태 운전 유도전동기의 회전속도 추정)

  • Yang, Chul-Oh;Park, Kyu-Nam;Song, Myung-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1783-1787
    • /
    • 2011
  • The slip frequency is included in feature frequency for fault diagnosis of rotor bar, so rotating rotor speed is needed. In this study, rotor slot harmonic(RSH) method is suggested for speed estimation of induction motor. When the rotor is rotating, motor current signal include the harmonic signal of back-emf voltage related with number of rotor slot. So from the power spectrum of current signal, the rotor speed can be founded. This method of rotor speed estimation gives the slip frequency, and the feature frequency of rotor bar fault can be calculated. Comparing with stroboscope speed meter, the error rate of suggested method is less than 0.1[%].

Localization of Mobile Robot using Local Map and Kalman Filtering (지역 지도와 칼만 필터를 이용한 이동 로봇의 위치 추정)

  • Lim, Byung-Hyun;Kim, Yeong-Min;Hwang, Jong-Sun;Ko, Nak-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1227-1230
    • /
    • 2003
  • In this paper, we propose a pose estimation method using local map acquired from 2d laser range finder information. The proposed method uses extended kalman filter. The state equation is a navigation system equation of Nomad Super Scout II. The measurement equation is a map-based measurement equation using a SICK PLS 101-112 sensor. We describe a map consisting of geometric features such as plane, edge and corner. For pose estimation we scan external environments by laser rage finer. And then these data are fed to kalman filter to estimate robot pose and position. The proposed method enables very fast simultaneous map building and pose estimation.

  • PDF

A Study on Parameter Estimation for General Aviation Canard Aircraft

  • Kim, Eung Tai;Seong, Kie-Jeong;Kim, Yeong-Cheol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.425-436
    • /
    • 2015
  • This paper presents the procedures used for estimating the stability and control derivatives of a general aviation canard aircraft from flight data. The maximum likelihood estimation method which accounts for both process and measurement noise was used for the flight data analysis of a four seat canard aircraft, the Firefly. Without relying on the parameter estimation method, several aerodynamic derivatives were obtained by analyzing the steady state flight data. A wind tunnel test, a flight test of a 1/4 scaled remotely controlled model aircraft, and the prediction of aerodynamic coefficients using the USAF Stability and Control Digital Data Compendium (DATCOM), Advanced Aircraft Analysis (AAA), and Computer Fluid Dynamics (CFD) were performed during the development phase of the Firefly and the results were compared with flight determined derivatives of a full scaled flight prototype. A correlation between the results from each method could be used for the design of the canard aircraft as well as for building the aerodynamic database.

Accelerometer Signal Processing for User Activity Detection (사용자 운동 상태 추정을 위한 가속도센서 신호처리 기술)

  • 백종훈;이기혁
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1279-1282
    • /
    • 2003
  • Estimation of human motion states is important enabling technologies for realizing a pervasive computing environment. In this paper, an improved method fur estimating human motion state from accelerometer data is introduced. Our method fur estimating human motion state utilizes various statistics of accelerometer data, such as mean, standard variation, skewness, kurtosis, eccentricity, as features for classification, and therefore is expected to be more robust than other existing methods that rely on only a few simple statistics. A series of experiments fur testing the effectiveness of the proposed method has been performed, and its result is presented.

  • PDF

Design of target state estimator and predictor using multiple model method (다중모델기법을 이용한 표적 상태추정 및 예측기 설계연구)

  • Jung, Sang-Geun;Lee, Sang-Gook;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.478-481
    • /
    • 1996
  • Tracking a target of versatile maneuver recently demands a stable adaptation of tracker, and the multiple model techniques are being developed because of its ability to produce useful information of target maneuver. This paper presents the way to apply the multiple model method in a moving-target and moving-platform scenario, and the estimation and prediction results better than those of single Kalman filter.

  • PDF

Unknown-Parameter Estimation of Electric-Hydraulic Servo Cylinder Based on Measurements (측정 데이터 기반 전기-유압 서보 실린더의 미지 변수 추정)

  • Seung, Ji Hoon;Yoo, Sung Goo;Seul, Nam O;Noh, Jackyou
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.6
    • /
    • pp.347-353
    • /
    • 2019
  • Electric-hydraulic sever cylinders are used in many offshore applications such as wind energy farms, solar farms and plants. Jack-up barges are often used for these offshore system operations. Jack-up barge control is up/down by hydraulic cylinder position control. Working in harsh environments can lead to changes in internal parameters. This nonlinearity makes precise control difficult. In order to overcome the problems, we proposed a method of unknown-parameter estimation algorithm based on measurements obtained by system. In this paper, we employee Unscented Kalman filter (UKF) to estimate states and unknown-parameter from augmented nonlinear equation. Performance of estimation results is verified in simulation on an environments of Matlab. The estimation results of the state and unknown-parameter show that the estimation error of unknown-parameter is reduced according to decreasing the state estimation error.

Accurate Voltage Parameter Estimation for Grid Synchronization in Single-Phase Power Systems

  • Dai, Zhiyong;Lin, Hui;Tian, Yanjun;Yao, Wenli;Yin, Hang
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1067-1075
    • /
    • 2016
  • This paper presents an adaptive observer-based approach to estimate voltage parameters, including frequency, amplitude, and phase angle, for single-phase power systems. In contrast to most existing estimation methods of grid voltage parameters, in this study, grid voltage is treated as a dynamic system related to an unknown grid frequency. Based on adaptive observer theory, a full-order adaptive observer is proposed to estimate voltage parameters. A Lyapunov function-based argument is employed to ensure that the proposed estimation method of voltage parameters has zero steady-state error, even when frequency varies or phase angle jumps significantly. Meanwhile, a reduced-order adaptive observer is designed as the simplified version of the proposed full-order observer. Compared with the frequency-adaptive virtual flux estimation, the proposed adaptive observers exhibit better dynamic response to track the actual grid voltage frequency, amplitude, and phase angle. Simulations and experiments have been conducted to validate the effectiveness of the proposed observers.

Localization Error Recovery Based on Bias Estimation (바이어스추정을 기반으로 한 위치추정의 오차회복)

  • Kim, Yong-Shik;Lee, Jae-Hoon;Kim, Bong-Keun;Ohba, Kohtaro;Ohya, Akihisa
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.112-120
    • /
    • 2009
  • In this paper, a localization error recoverymethod based on bias estimation is provided for outdoor localization of mobile robot using different-type sensors. In the previous data integration method with DGPS, it is difficult to localize mobile robot due to multi-path phenomena of DGPS. In this paper, fault data due to multi-path phenomena can be recovered by bias estimation. The proposed data integration method uses a Kalman filter based estimator taking into account a bias estimator and a free-bias estimator. A performance evaluation is shown through an outdoor experiment using mobile robot.

  • PDF

An interactive multiple model method to identify the in-vessel phenomenon of a nuclear plant during a severe accident from the outer wall temperature of the reactor vessel

  • Khambampati, Anil Kumar;Kim, Kyung Youn;Hur, Seop;Kim, Sung Joong;Kim, Jung Taek
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.532-548
    • /
    • 2021
  • Nuclear power plants contain several monitoring systems that can identify the in-vessel phenomena of a severe accident (SA). Though a lot of analysis and research is carried out on SA, right from the development of the nuclear industry, not all the possible circumstances are taken into consideration. Therefore, to improve the efficacy of the safety of nuclear power plants, additional analytical studies are needed that can directly monitor severe accident phenomena. This paper presents an interacting multiple model (IMM) based fault detection and diagnosis (FDD) approach for the identification of in-vessel phenomena to provide the accident propagation information using reactor vessel (RV) out-wall temperature distribution during severe accidents in a nuclear power plant. The estimation of wall temperature is treated as a state estimation problem where the time-varying wall temperature is estimated using IMM employing three multiple models for temperature evolution. From the estimated RV out-wall temperature and rate of temperature, the in-vessel phenomena are identified such as core meltdown, corium relocation, reactor vessel damage, reflooding, etc. We tested the proposed method with five different types of SA scenarios and the results show that the proposed method has estimated the outer wall temperature with good accuracy.