• Title/Summary/Keyword: state change of water

Search Result 433, Processing Time 0.037 seconds

Analysis of Steady and Unsteady State Behavior in Behavior Water Distillation Process (중수증류공정의 정상 및 비정상상태 거동해석)

  • Kim, Kwang-Rag;Chung, Hong-Suck;Sung, Ki-Woung;Kim, Yong-Eak;Lee, Kun-Jae
    • Nuclear Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.107-116
    • /
    • 1986
  • The steady and unsteady state models were established for the performance analysis and design of heavy water distillation columns packed with corrugated wire mesh. After the steady state model was derived with pressure drops, separated D$_2$O concentration and temperature profiles and pressure gradients in the column were obtained by solving MESH equations with equation tearing method. For the analysis of unsteady state behavior, the equilibrium stage transient model deduced from modifying the Cohen's ideal cascade equation was used to predict the concentration change of heavy water with time. These models were in good agreement with the experimental results of heavy water distillation at total reflux. And the newly developed packing material turned out to be very efficient separation device for very small HETP, pressure drop and holdup.

  • PDF

Analysis of the Water Quality Change Due to Water Level Control of Sayeon Dam (사연댐 수위조절시 수질변화 분석)

  • Lee, Sang Hyeon;Cho, Hong Je
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1069-1078
    • /
    • 2013
  • The Bangudae Petroglyphs, national treasure No. 285 is located within submerged upper districts of Sayeon dam supplying the main residential water in Ulsan. Of the many ways for the reservation of Petroglyphs located the altitude at 53~57 m, the plan that we take it out of the water lowering the water level from 60 m to 52 m has been examined mainly in case of controlling artificially the water level of the dam. In this paper, we examined expected problems from the loss of dam function and the change of water quality from water deterioration caused by the water level control of the Sayeon dam. Using the model of Vollenweider and CSTR (Continuous Stirred Tank Reactor), we analyzed the density change of BOD and COD, representative water quality index and the TP and TN, the main reason of algae growth. The result showed that the density of COD lowered a little but the density of TP and TN went up over 130% when controlling the water level from 60 m to 52 m. These changes cause a serious algae problem and if doing the water quality management as the density of TN and TP, the water quality would become worse. Water storage and supply residential water decreases, and the water quality becomes worse because of eutrophic state.

INTUMESCENT INORGANIC AND ORGANIC COATINGS

  • Kodolov, V.I.;Mikhalkina, T.M.;Shuklin, S.G.;Bystrov, S.G.;Larionov, K.I.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.130-137
    • /
    • 1997
  • Intumescent inorganic and organic coatings which dintr one from the other by the type of gas formers and the mechanisms of foam formation have been obtained and investigated. Inorganic intumescent coatings are the compositions based on water glass and mineral additives with different dispersity. Mineral additives contain adsorbed and absorbed water and carbonates which are destructed with the carbon dioxide and water evolution during the flame action on coating. The decreasing of mineral additives particle sizes under the mechanical milling with the fraction precipitation promotes the foam coke formation with less defects. Here the main structure of comparing compositions does not change. In organic coatings based on epoxy-polymers the polyammonium phosphate additive is used. It is the cabonization catalyst and the foam agent. The polyammonium phosphate of various dispersity employed is uniformly distributed on the polymeric matrix. The decreasing of the particle sizes leads to the increasing of the fire resistant properties of the intumescent coa-ting. The fire resistant analysis of the coating during more than an hour: the coating back side the temperature on plastic or wooden materials does not exceed 423K, and on metal-573K.

  • PDF

Tidal Power Station Excitation System for a Considering Wave Characteristic (파랑특성을 고려한 조력발전소 여자시스템 적용에 관한 연구)

  • Kim, Hyun-Han;Kim, Kwang-Ho;Jeong, Jong-Chan;Park, Sung-Ho;Ok, Yeon-Ho;Choi, Hyung-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.251-252
    • /
    • 2008
  • Si-Hwa tidal power station is using difference of the ebb and flow. The active power is dependent on up and down sea water level but if it is drastically changed because of a typhoon or waves the generator terminal voltage and active power is changed that is a chief cause of power station unstability. Therefore this paper arrange a present state of power or frequency fluctuation and generator terminal phase difference in case of occurrence a drastic change of sea water level.

  • PDF

The Rheological Behaviors of Solid-Liquid Transfer Emulsion (고상-액상 전이형 에멀젼의 레올로지 거동)

  • Park, Byeong-Gyun;Han, Jong-Sub;Lee, Sang-Min;Lee, Cheon-Koo;Yoon, Moung-Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.2 s.51
    • /
    • pp.135-140
    • /
    • 2005
  • A solid state emulsion haying high velocity gradient shows two important transition ranges in the plot of storage modulus(G') as a function of shear strain, when the state is changed from solid to liquid. However, a solid state emulsion having low velocity gradient shows only one apparent transition range when the change from solid to liquid state takes place. The result implies the importance of the surface properties in the solid state emulsion. The addition of water phase in the solid state emulsion reduces the modulus in the modulus in the surface transition range by increasing interfacial friction and weakening the matrix. The addition of pigments increases the modulus in the modulus in the surface transition range by reinforcing the matrix, when there is no wafer phase in the solid state emulsion. When the solid state emulsion has water phase, however, the addition of pigments decreases the modulus in the modulus in the surface transition range.

A Comparative Study on the Bio-kinetics of Suspended Sludge and Attached Sludge (막미생물과 부유미생물의 kinetics 비교 연구)

  • Lee, Jeoung Su;Lee, Tae Kyoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.4
    • /
    • pp.59-69
    • /
    • 1998
  • Biological treatment systems generally can be divided into two main classes of a suspended sludge process and attached one like a fluidized bed reactor. These process are considered to bring remarkable change in species composition of microorganisms, due to difference of a state of biofilm, a concentration and diffusion velocity of dissolved oxygen, a concentration and diffusion velocity of substance or poisonous matter. The change of species composition bring different treatment result for influence factors like F/M ratio, DO concentration, pH or poisonous matter. This study is to investigate the reaction characteristics of both microorganisms, namely, a suspended sludge and attached sludge, through the changes of pH, temperature and substance concentration.

  • PDF

Impact Assessment of Agricultural Reservoir and Landuse Changes on Water Circulation in Watershed (농업용 저수지와 토지이용변화가 유역 물순환에 미치는 영향 평가)

  • Kim, Seokhyeon;Song, Jung-Hun;Hwang, Soonho;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.1-10
    • /
    • 2021
  • Agricultural reservoirs have a great influence on the water circulation in the watershed. It is necessary to evaluate the impact on water circulation by the agricultural reservoir. Therefore, in this study, we simulated the agricultural watershed through linkage of Hydrological Simulation Program Fortran (HSPF) and Module-based hydrologic Analysis for Agricultural watershed (MASA) and evaluated the contribution of the agricultural reservoir to water circulation by watershed water circulation index. As a result of simulating the Idong reservoir watershed through the HSPF-MASA linkage model, the model performance during the validation period was R2 0.74 upstream, 0.78 downstream, and 0.76 reservoir water level, respectively. To evaluate the contribution of agricultural reservoirs, three scenarios (baseline, present state, and present state without reservoir) were simulated, and the water balance differences for each scenario were analyzed. In the evaluation through the agricultural water circulation rate in the watershed, it was found that the water circulation rate increased by 1.1%, and the direct flow rate decreased by 13.6 mm due to the agricultural reservoir. In the evaluation through the Budyko curve, the evaporation index increased by 0.01. Agricultural reservoirs reduce direct runoff and increase evapotranspiration, which has a positive effect on the water circulation.

A Study of Parallel Reservoir Integrated Operation considering Storage (저류량을 고려한 병렬저수지 연계운영)

  • Park, Ki-Bum;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1176-1181
    • /
    • 2006
  • The purpose of this study was to estimate water supply analysis and reliability indicators by using allocation rule(AR) about Andong Dam and Imha Dam which have parallel reservoirs system. According to the analysis results of allocation rule, for Rule(A) and Rule(B), the contribution of water supply in Andong Dam was 60% more than in Imha Dam, and for Rule(C), the contributions in Andong Dam and Imha Dam were almost equal. In Rule(C), supply is allocated by the ratio which divides the sum of storage and inflow by the mean storage according to the storage state and supply capability state of Andong Dam and Imha Dam. This Rule(C) showed good results in the water supply capability analysis and reliability analysis of parallel reservoirs. In the analysis criteria of water supply in parallel reservoirs system, monthly water change quantity showed better results than monthly constant water quantity in water supply analysis. On the basis of this study, the new technique for water supply analysis was developed to be applied to parallel reservoirs, and this operation rule will establish the efficient operation measures in the application to several kinds of parallel reservoirs system.

  • PDF

A Study on the Statistical Predictability of Drinking Water Qualities for Contamination Warning System (수질오염 감시체계 구축을 위한 수질 데이터의 통계적 예측 가능성 검토)

  • Park, No-Suk;Lee, Young-Joo;Chae, Seonha;Yoon, Sukmin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.4
    • /
    • pp.469-479
    • /
    • 2015
  • This study have been conducted to analyze the feasibility of establishing Contamination Warning System(CWS) that is capable of monitoring early natural or intentional water quality accidents, and providing active and quick responses for domestic C_water supply system. In order to evaluate the water quality data set, pH, turbidity and free residual chlorine concentration data were collected and each statistical value(mean, variation, range) was calculated, then the seasonal variability of those were analyzed using the independent t-test. From the results of analyzing the distribution of outliers in the measurement data using a high-pass filter, it could be confirmed that a lot of lower outliers appeared due to data missing. In addition, linear filter model based on autoregressive model(AR(1) and AR(2)) was applied for the state estimation of each water quality data set. From the results of analyzing the variability of the autocorrelation coefficient structure according to the change of window size(6hours~48hours), at least the window size longer than 12hours should be necessary for estimating the state of water quality data satisfactorily.

Balancing Water Supply Reliability, Flood Hazard Mitigation and Environmental Resilience in Large River Systems

  • Goodwin, Peter
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.1-1
    • /
    • 2016
  • Many of the world's large ecosystems are severely stressed due to population growth, water quality and quantity problems, vulnerability to flood and drought, and the loss of native species and cultural resources. Consequences of climate change further increase uncertainties about the future. These major societal challenges must be addressed through innovations in governance, policy, and ways of implementing management strategies. Science and engineering play a critical role in helping define possible alternative futures that could be achieved and the possible consequences to economic development, quality of life, and sustainability of ecosystem services. Science has advanced rapidly during the past decade with the emergence of science communities coalescing around 'Grand Challenges' and the maturation of how these communities function has resulted in large interdisciplinary research networks. An example is the River Experiment Center of KICT that engages researchers from throughout Korea and the world. This trend has been complemented by major advances in sensor technologies and data synthesis to accelerate knowledge discovery. These factors combine to allow scientific debate to occur in a more open and transparent manner. The availability of information and improved communication of scientific and engineering issues is raising the level of dialogue at the science-policy interface. However, severe challenges persist since scientific discovery does not occur on the same timeframe as management actions, policy decisions or at the pace sometimes expected by elected officials. Common challenges include the need to make decisions in the face of considerable uncertainty, ensuring research results are actionable and preventing science being used by special interests to delay or obsfucate decisions. These challenges are explored in the context of examples from the United States, including the California Bay-Delta system. California transfers water from the wetter northern part of the state to the drier southern part of the state through the Central Valley Project since 1940 and this was supplemented by the State Water Project in 1973. The scale of these activities is remarkable: approximately two thirds of the population of Californians rely on water from the Delta, these waters also irrigate up to 45% of the fruits & vegetables produced in the US, and about 80% of California's commercial fishery species live in or migrate through the Bay-Delta. This Delta region is a global hotspot for biodiversity that provides habitat for over 700 species, but is also a hotspot for the loss of biodiversity with more than 25 species currently listed by the Endangered Species Act. Understanding the decline of the fragile ecosystem of the Bay-Delta system and the potential consequences to economic growth if water transfers are reduced for the environment, the California State Legislature passed landmark legislation in 2009 (CA Water Code SS 85054) that established "Coequal goals of providing a more reliable water supply for California and protecting, restoring, and enhancing the Delta ecosystem". The legislation also stated that "The coequal goals shall be achieved in a manner that protects and enhances the unique cultural, recreational, natural resource, and agricultural values of the Delta as an evolving place." The challenges of integrating policy, management and scientific research will be described through this and other international examples.

  • PDF