DOI QR코드

DOI QR Code

Solvolyses of N-Methyl-N-phenylcarbamoyl Chlorides with Electron Acceptor Substituents in A Queous Binary Mixtures


Abstract

Solvolyses of N-methyl-N-phenylcarbamoyl chlorides in aqueous binary mixtures of acetone, ethanol, methanol and in water, D2O, and 50% D2O-CH3OD are investigated at 25.0 $^{\circ}C.$ The Grunwald-Winstein plots of first-ord er rate constants for N-methyl-N-phenylcarbamoyl chlorides with YCl (based on 2-adamantyl chloride) show a dispersion phenomenon. The ring parameter (I) has been shown to give considerable improvement when it is added as an hI term to the original Grunwald-Winstein and extended Grunwald-Winstein correlations for the solvolyses of N-methyl-N-phenylcarbamoyl chlorides. This study has shown that the magnitude of l, m and h values associated with a change of solvent composition is able to predict the dissociative SN2 transition state. The kinetic solvent isotope effects determined in deuterated water are consistent with the proposed mechanism of the general base catalyzed and/or a dissociative SN2 mechanism channel for N-methyl-N-phenylcarbamoyl chlorides solvolyses.

Keywords

References

  1. J. Org. Chem. v.28 no.2818 Hall, H. K., Jr.;Lueck, C. H.
  2. Can. J. Chem. v.45 no.1619 Queen, A.
  3. Can. J. Chem. v.48 no.522 Queen, A.;Nour, T. A.;Paddon-Raw, M. N.;Preston, K.
  4. Adv. Phys. Org. Chem. v.5 no.237 Johnson, S. L.
  5. J. Org. Chem. v.37 no.1383 Johnson, S. L.;Giron, H. M.
  6. J. Chem. Soc., Perkin Trans. 2 v.1011 Bacaloglu, R.;Daescu, C.;Ostrogovich, G.
  7. J. Org. Chem. v.60 no.1632 D'Souza, M. J.;Kevill, D. N.;Bentley, T. W.;Devaney, A. C.
  8. J. Am. Chem. Soc. v.103 no.5466 Bentley, T. W.;Bowen, C. T.;Morten, D. H.;Schleyer, P. v. R.
  9. J. Org. Chem. v.29 no.3539 Hall, H. K.
  10. J. Korean Chem. Soc. v.23 no.368 Kim, S. C.;Song, H. B.;Lee, I.
  11. J. Org. Chem. v.51 no.3498 Shawali, A. S.;Harhash, A.;Sidky, M. M.;Hassaneen, H. M.;Elkaabi, S. S.
  12. Bull. Korean Chem. Soc. v.17 no.712 Koh, H. J.;Lee, H. C.;Lee, H. W.;Lee, I.
  13. J. Chem. Soc., Perkin Trans. 2 v.175 Koo, I. S.;Bentley, T. W.;Kang, D. H.;Lee, I.
  14. J. Chem. Soc., Perkin Trnas. 2 v.1385 Bentley, T. W.;Koo, I. S.
  15. J. Am. Chem. Soc. v.104 no.5741 Bentley, T. W.;Carter, G. E.
  16. J. Chem. Soc. Perkin Trans. 2 v.783 Bentley, T. W.;Harris, H. C.;Koo, I. S.
  17. J. Chem. Soc. Perkin Trans. 2 v.619 Bentley, T. W.;Harris, H. C.
  18. J. Am. Chem. Soc. v.70 no.846 Winstein, S.;Grunwald, E.
  19. J. Org. Chem. v.57 no.2387 Bentley, T. W.;Dau-Schmidt, J.-P.;Llewellyn, G.;Mayr, H.
  20. J. Am. Chem. Soc. v.79 no.4146 Winstein, S.;Fainberg, A. H.;Grunwald, E.
  21. J. Am. Chem. Soc. v.79 no.1957 Fainberg, A. H.;Winstein, S.
  22. J. Am. Chem. Soc. v.73 no.2700 Winstein, S.;Grunwald, E.;Jones, H. W.....
  23. J. Org. Chem. v.59 no.6303 Krvill, D. N.;Ismail, N. H. J.;D'Souza, M. J.
  24. J. Chem. Soc., Perkin Trans. 2 v.973 Kevill, D. N.;D'Souza, M. J.
  25. J. Am. Chem. Soc. v.108 no.1597 Kevill, D. N.;Anderson, S. W.
  26. J. Org. Chem. v.62 no.7869 Kevil, D. N.;Bond, M. W.;D'Souza, M. J.
  27. J. Am. Chem. Soc. v.95 no.638 Snnen, R. A.;Felt, G. R.;Dickason, W. C.
  28. J. Am. Chem. Soc. v.98 no.2861 Friedberger, M. P.;Thornion, E. R.
  29. Bull. Korean Chem. Soc. v.19 no.968 Koo, I. S.;Yang, K.;Kang, K.;Lee, I.
  30. J. Org. Chem. v.56 no.1604 Bentley, T. W.;Koo, I. S.;Norman, S.
  31. J. Chem. Soc., Perkin Trans. 2 v.2181 Liu, K.-T.;Duann, Y.-F.;Hou, S.-J.
  32. J. Chem. Res. v.310 Oh, J.;Yang, K.;Koo, I. S.;Lee, I.
  33. J. Org. Chem. v.53 no.724 Bentley, T. W.;Harris, H. C.
  34. J. Chem. Soc., Perkin Trans. 2 v.753 Bentley, T. W.;Jones, R. O.;Koo, I. S.
  35. Chem. Soc., Perkin Trans. 2 v.743 Bentley, T. W.;Jones, R. O.
  36. Phil Thesis, University of Wales Jones, R. O. M.
  37. Prog. Phys. Org. Chem. v.17 no.121 Bentley, T. W.;Llewellyn, G.
  38. J. Org. Chem. v.63 no.4654 Bentley, T. W.;Llewllyn, G.;Ryu, Z. H.
  39. Bull. Korean Chem. Soc. v.20 no.577 Koo, I. S.;Yang, K.;Kang, D. H.;Park, H. J.;Kang, K.;Lee, I.
  40. Bull. Korean. Chem. Soc. v.17 no.277 Koh, H. J.;Han, K. L.;Lee, H. W.;Lee, I.
  41. J. Phy. Org. Chem. v.6 no.223 Koo, I. S.;Lee, I.;Oh, J.;Yang, K.;Bentley, T. W.
  42. Bull. Korean Chem. Soc. v.15 no.280 Yang, K.;Koo, I. S.;Lee, I.;Jo, D.-S.
  43. J. Org. Chem. v.63 no.2120 Kevill, D. N.;D'Souza, M. J.

Cited by

  1. Correlation of the Rates of Solvolyses of Cinnamyl Bromide vol.24, pp.4, 2001, https://doi.org/10.5012/bkcs.2003.24.4.431
  2. Limitations of the Transition State Variation Model. Part 8. Dual Reaction Channels for Solvolyses of 3,4-Dimethoxybenzenesulfonyl Chloride vol.28, pp.12, 2001, https://doi.org/10.5012/bkcs.2007.28.12.2377
  3. Correlations of the Specific Rates of Solvolysis of Aromatic Carbamoyl Chlorides, Chloroformates, Chlorothionoformates, and Chlorodithioformates Revisited vol.8, pp.4, 2007, https://doi.org/10.3390/i8040346
  4. Correlation of the Rates of Solvolysis of 4-Morpholinecarbonyl Chloride Using the Extended Grunwald-Winstein Equation vol.31, pp.7, 2010, https://doi.org/10.5012/bkcs.2010.31.7.1963
  5. Correlation of the Rates of Solvolysis of 1-Piperidincarbonyl Chloride Using the Extended Grunwald-Winstein Equation vol.32, pp.11, 2001, https://doi.org/10.5012/bkcs.2011.32.11.3941
  6. Correlation of the Rates of Solvolyses of 4-Methylthiophene-2-carbonyl Chloride Using the Extended Grunwald-Winstein Equation vol.33, pp.2, 2001, https://doi.org/10.5012/bkcs.2012.33.2.499
  7. Mechanistic Studies of the Solvolyses of Carbamoyl Chlorides and Related Reactions vol.17, pp.1, 2001, https://doi.org/10.3390/ijms17010111