• Title/Summary/Keyword: start-up algorithm

Search Result 85, Processing Time 0.024 seconds

Intelligent 2-DOF PID Control For Thermal Power Plant Using Immune Based Multiobjective

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1371-1376
    • /
    • 2003
  • In the thermal power plant, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature, the change of the dynamic characteristics in the reheater. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on tuning of the 2-DOF PID Controller on the DCS for steam temperature control using immune based multiobjective approach. The stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Therefore tuning technique of multiobjective based on immune network algorithms in this paper can be used effectively in tuning 2-DOF PID controllers.

  • PDF

Optimal Trajectory Generation for Biped Robots Walking Up-and-Down Stairs

  • Kwon O-Hung;Jeon Kweon-Soo;Park Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.612-620
    • /
    • 2006
  • This paper proposes an optimal trajectory generation method for biped robots for walking up-and-down stairs using a Real-Coded Genetic Algorithm (RCGA). The RCGA is most effective in minimizing the total consumption energy of a multi-dof biped robot. Each joint angle trajectory is defined as a 4-th order polynomial of which the coefficients are chromosomes or design variables to approximate the walking gait. Constraints are divided into equalities and inequalities. First, equality constraints consist of initial conditions and repeatability conditions with respect to each joint angle and angular velocity at the start and end of a stride period. Next, inequality constraints include collision prevention conditions of a swing leg, singular prevention conditions, and stability conditions. The effectiveness of the proposed optimal trajectory is shown in computer simulations with a 6-dof biped robot model that consists of seven links in the sagittal plane. The optimal trajectory is more efficient than that generated by the Modified Gravity-Compensated Inverted Pendulum Mode (MGCIPM). And various trajectories generated by the proposed GA method are analyzed from the viewpoint of the consumption energy: walking on even ground, ascending stairs, and descending stairs.

A Protection Algorithm of Grid-Interactive Photovoltaic System Considering Operation Characteristics of Recloser (리클로져의 동작특성을 고려한 계통연계형 태양광발전시스템의 보호 알고리즘)

  • Kim, Seul-Ki;Kim, Eung-Sang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.280-286
    • /
    • 2006
  • The paper proposes a new protection algorithm for reliable operation of grid-interfaced PV system, which can flexibly interact with conventional protective schemes of power utility grid not only to prevent damages to utility or public persons and utility apparatus caused by malfunction or failure in distribution network protection system, but also to protect a PV system itself from faults or abnormal conditions of the network. The proposed algorithm is based on reclosing characteristics of the distribution system. As a network fault occurs, the new scheme determines whether it is momentary or permanent and responds in a pre-programmed way to the fault. For permanent outage, the proposed algorithm shuts down inverter's operations but monitoring system voltage and frequency at the point of common coupling with grid. When it comes to the momentary outage, Inverter starts stand-by operation mode so that it can be automatically connected to the grid without start-up procedures as soon as the system voltage and frequency returns into the normal operation range. In order to investigate' and evaluate the PV system operation, simulation study based on PSCAD/EMTDC has been carried out to verify the performance of the proposed protection scheme.

The Neural-Fuzzy Control of a Transformer Cooling System

  • Lee, Jong-Yong;Lee, Chul
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2016
  • In transformer cooling systems, oil temperature is controlled through the use of a blower and oil pump. For this paper, set-point algorithms, a reset algorithm and control algorithms of the cooling system were developed by neural networks and fuzzy logics. The oil inlet temperature was set by a $2{\times}2{\times}1$ neural network, and the oil temperature difference was set by a $2{\times}3{\times}1$ neural network. Inputs used for these neural networks were the transformer operating ratio and the air inlet temperature. The inlet set temperature was reset by a fuzzy logic based on the transformer operating ratio and the oil outlet temperature. A blower was used to control the inlet oil temperature while the oil pump was used to control the oil temperature difference by fuzzy logics. In order to analysis the performance of these algorithms, the initial start-up test and the step change test were performed by using the dynamic model of a transformer cooling system. Test results showed that algorithms developed for this study were effective in controlling the oil temperature of a transformer cooling system.

A study of Large Synchronous Machine Drive using Static Frequency Converter (정지형 주파수 변환 장치를 활용한 대용량 동기 발전 전동기 운전에 관한 연구)

  • 박신현;김장목;임익헌;류호선
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.496-503
    • /
    • 2003
  • SFC system has come to be used as drive large synchronous machine in many industry applications. Many papers have been presented on the control algorithm of SFC system, not the acceleration and start-up but the rated speed operation with line connection and the braking operation with regeneration which is used in the industry. This paper presents the whole section control algorithm for a large synchronous machine using SFC system. The results of experiment show that the proposed algorithm is proper and effective.

Performance Analysis of a Fractionally Spaced Equalizer using Selective Normalized CMA (선택적 NCMA 방법을 이용한 분할 블라인드 적응 등화기의 성능 분석)

  • Hong, Ji-Hun;Jang, Tae-Jeong
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.99-105
    • /
    • 2001
  • In this paper, the selective normalized constant modulus algorithm(SNCMA) is applied to a fractionally spaced equalizer. The fractionally spaced equalizer is insensitive to the sampling timing because it processes received signals with the sampling rate larger than the symbol rate. The SNCMA improves the convergence rate by using the large step size for the most outer covering symbol belonging to the trust-level. This blind equalizer exhibits a fast start-up convergence rate as well as a reduced steady-state residual error compared to the fractionally spaced blind equalizer and the T-spaced blind equalizer using conventional blind algorithms.

  • PDF

Adaptive control of a slim-type reactor for free radical polymerization of LDPE

  • Ham, Jae-Yong;Rhee, Hyun-ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.36-41
    • /
    • 1993
  • The adiabatic slirn-type autoclave reactor for free radical polymerization of LDPE is represented by a two-compartment four-cell model, which is proven effective to predict the reactor behavior as well as the polymer properties. Since the temperature distribution along the reactor axis plays the central role for the properties of the polymer product, it is important in practice to regulate the temperature in each compartment. The present study aims for the application of the adaptive control algorithm not only in the period of start-up but also during the steady state operation. It is shown that the temperature control is significantly improved over the conventional PID-control and this also brings about a reduction of variations in the polymer properties. This study demonstrates the potential application of the adaptive controller for the control of the polymerization reactor operated under the adiabatic condition.

  • PDF

A Cost Optimization Problem on a 2 Level Transportation Network (2단계 수송네트워크 상에서의 장기적 비용 최적화)

  • Jung, Jae-Heon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.3
    • /
    • pp.1-15
    • /
    • 2005
  • In our model, a fleet of vehicles start from docking point to collect loads at the terminals assigned to the point Then the docking points are connected to the hub by primary vehicle routes starting at the hub. This vehicle visit all the docking points to collect the loads which have been collected by the secondary vehicles. Our goal Is to minimize the long-run cost of setting up the docking Points and vehicle operation cost by deciding the location of the docking points and the routes optimally. We propose an heuristic algorithm to solve this and tested it though various experiments.

A Wind Turbine Simulator with Variable Torque Input (풍력 터빈 모의 실험을 위한 가변 토오크 입력형 시뮬레이터)

  • Jeong, Byeong-Chang;Song, Seung-Ho;No, Do-Hwan;Kim, Dong-Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.467-474
    • /
    • 2002
  • In this paper, a wind power simulator is designed and implemented. To realize the torque of wind blade, a DC motor is used as a variable torque input device. An induction machine is used as a generator of which speed is controlled to maintain the optimal tip speed ratio during wind speed change. Input torque of system is controlled by armature current of DC motor and speed is controlled by generator control unit using field oriented control algorithm. Various control algorithms such as MPPT, soft start up, the simulator reactive power control, can be developed and tested using the simulator.

Modeling and adaptive pole-placement control of LDPE autoclave reactor

  • Ham, Jae-Yong;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.146-151
    • /
    • 1992
  • A two-compartment four-cell model is developed for the adiabatic autoclave slim type reactor for free radical polymerization of low density polyethylene(LDPE). The mass and energy balances give rise to a set of ordinary differential equations, and by analyzing the system it is possible to predict properly not only the reactor performance but also the properties of polymer product. The steady state multiplicity is found to exist and examined by constructing the bifurcation diagram. The effects of various operation parameters on the reactor performance and polymer properties are investigated systematically to show that the temperature distribution plays the central role for the properties of polymer product. Therefore, it is essential to establish a good control strategy for the temperature in each compartment. In this study it is shown that the reactor system can be adoptively controlled by pole-placement algorithm with conventional PID controller. To accomplish a satisfactory control, the estimator and controller are initialized during the period of start-up.

  • PDF