• Title/Summary/Keyword: stars:temperature

Search Result 107, Processing Time 0.027 seconds

THE EFFECTS OF HORIZONTAL-BRANCH STARS ON THE H$\beta$ INDEX OF SIMPLE STELLAR POPULATION MODELS

  • LEE HYUN-CHUL;LEE YOUNG-WOOK;PARK JANG-HYUN
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.133-134
    • /
    • 1996
  • We present the systematic variations of H$\beta$ index of simple stellar populations due to horizontal-branch (HB) stars. Most of the previous works have been done without careful considerations of HB stars. Since the Balmer line strengths are very sensitive to the temperature, including the HB stars are quite important. We found that the strength of H,6 index is strongly affected by HB stars, and hence the age estimation without careful consideration of the variation of HB morphology with metallicity and age would underestimate the ages of ellipticals.

  • PDF

Effective Temperature of the Six Exciting Stars of Rosette Nebula (Rosette 성운(星雲)의 Exciting Stars의 유효온도(有效溫度))

  • Woo, Jong-Ok;Yu, Kyung-Loh
    • Journal of The Korean Astronomical Society
    • /
    • v.3 no.1
    • /
    • pp.7-11
    • /
    • 1970
  • Optical thickness of Rosette Nebula for Lyman Continuum is examined with W. Gebel's data. And the effective temperatures of the six exciting 0 stars of the nebula are obtained on the assumption that O stars emit black body radiation. The results are found to be generally in between Spitzers old and revised values.

  • PDF

Wolf-Rayet star evolution with clumpy envelope structure

  • Jang, Hye-Eun;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.42.2-42.2
    • /
    • 2016
  • It is well known that theoretical models of Wolf-Rayet stars are not consistent with observational data in terms of temperature and stellar radius. Recent study in analytical and numerical simulations show the importance of density inhomogeneity in stellar envelope. Using 1-dimensional numerical simulations, we study how such clumpiness arisen over convective surface of Wolf-Rayet stars affect their evolutionary path. Starting from pure helium star models, we constructed 21 different initial conditions by varying stellar mass, metallicity, and the clumpiness of the sub-surface convection zone. We run the simulations until the oxygen-burning is reached and find that the influence of the clumpiness is sensitive to the initial metallicity. Our models with high metallicity including the effect of the density inhomogeneity can roughly explain the observed properties of Wolf-Rayet stars such as stellar radius and temperature. By contrast, despite a considerable amount of density inhomogeneity is given, low metallicity models could not fully explain observations. To understand the inconsistency in low metallicity models, detailed study with improved model is required, taking account of the error range of the observations.

  • PDF

Gravitational Instability of Protoplanetary Disks around Low-mass Stars

  • Lee, Gain;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.50.1-50.1
    • /
    • 2021
  • Gravitational instability (GI) can produce massive gas giants on wide orbits by fragmentation of protoplanetary disks (PPDs). While most previous works focus on PPDs around solar mass stars, gas giants have been observed in systems with a wide range of stellar masses including M dwarfs. We use the GIZMO code to perform global three-dimensional simulations of self-gravitating disks around low-mass stars. Our models consider heating by turbulent viscosity and stellar irradiation and the β cooling occurring over the dynamical time. We run various models with differing disk-to-star mass ratio q and disk temperature. We find that strongly gravitating disks either produce spirals or undergo fragmentation. The minimum q value for fragmentation is 0.2-0.7, with a smaller value corresponding to a more massive star and/or a smaller disk. The critical q value depends somewhat sensitively on the disk temperature, suggesting that the stellar irradiation is an important factor in determining GI. We discuss our results in comparison with previous work as well as recent ALMA observations.

  • PDF

The Possible Signs of Hydrogen and Helium Accretion from Interstellar Medium on the Atmospheres of F-K Giants in the Local Region of the Galaxy

  • Yushchenko, Alexander;Kim, Seunghyun;Jeong, Yeuncheol;Demessinova, Aizat;Yushchenko, Volodymyr;Doikov, Dmytry;Gopka, Vira;Jeong, Kyung Sook;Rittipruk, Pakakaew
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.175-183
    • /
    • 2021
  • The dependencies of the chemical element abundances in stellar atmospheres with respect to solar abundances on the second ionization potentials of the same elements were investigated using the published stellar abundance patterns for 1,149 G and K giants in the Local Region of the Galaxy. The correlations between the relative abundances of chemical elements and their second ionization potentials were calculated for groups of stars with effective temperatures between 3,764 and 7,725 K. Correlations were identified for chemical elements with second ionization potentials of 12.5 eV to 20 eV and for elements with second ionization potentials higher than 20 eV. For the first group of elements, the correlation coefficients were positive for stars with effective temperatures lower than 5,300 K and negative for stars with effective temperatures from 5,300 K to 7,725 K. The results of this study and the comparison with earlier results for hotter stars confirm the variations in these correlations with the effective temperature. A possible explanation for the observed effects is the accretion of hydrogen and helium atoms from the interstellar medium.

The Effects of Mass Loss on the Pre-Main Sequence Evolutionary Tracks of Stein's Model Stars

  • Um, In-Kyung
    • Publications of The Korean Astronomical Society
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 1984
  • Under the context of Stein's linear theory of stellar models, the luminosity-effective temperature relationship is derived for contracting pre-main sequence stars which are losing mass, according to the empirical formula, given by Reimers (1975). The effects of mass loss on their evolution are investigated by calculating evolutionary tracks of 1. $1.5M_{\odot}$, $5M_{\odot}$, and $10M_{\odot}$, stars. Our calculations reveal that the effects of mass loss show up in the radiative equilibrium stage of the evolution. It is found that an increase of mass loss rate leads to delay the onset of radiative equilibrium, thus resulting in under-luminous main sequence stars. It is also noted that the mass loss prolongs the pre-main sequence life time. Detailed results of the calculations are discussed.

  • PDF

Relations between Gaussian width of Power Excess and Other Global Seismic Properties of Solar-like Stars from Main-sequence to Subgiant

  • Kim, Ki-Beom;Chang, Heon-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.58.3-58.3
    • /
    • 2016
  • The Kepler space mission provides quantitative and qualitative photometric time series of oscillating stars. It is possible to examine statistical study with seismic properties of solar-like stars. Global seismic properties - large frequency separation (${\Delta}{\nu}$), frequency of maximum power (${\nu}_{max}$) and amplitude of Gaussian envelope (A) widely have been used to determine empirical scaling relations for inferring the stellar physical quantities - mass, age and temperature. We aim to confirm whether width of Gaussian envelope on power excess (${\delta}{\nu}_{env}$) can be used with parameter of scaling relation before redgiant phase using Kepler data. Therefore we analyze the characteristics of ${\delta}{\nu}_{env}$ of 129 solar-like stars from main-sequence to subgiant. We have demonstrated that ${\delta}{\nu}_{env}$ has highly correlations with global parameters - ${\Delta}{\nu}$ and ${\nu}max$. We have also found the break of ${\delta}{\nu}_{env}-{\Delta}{\nu}$ and ${\nu}_{max}$ relations.

  • PDF

THE LYMAN-CONTINUUM LUMINOSITIES OF OB-TYPE STARS (OB형 별의 라이먼 연속 복사의 광도)

  • Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.97-101
    • /
    • 2007
  • We are often faced with the task of having to estimate the hydrogen and helium ionizing luminosities of massive stars in the study of H II regions and the warm ionized medium (WIM). Using the results of the most complete compilation of stellar parameters (the effective temperature, stellar radius and surface gravity) and the latest Kurucz stellar atmosphere models, we calculate the ionizing photon luminosities in the $H^0\;and\;He^0$ continua from O3 to B5 stars. We compared the theoretical Lyman-continuum luminosity with the observationally inferred luminosity of the H II region around ${\alpha}$ Vir, and found that the theoretical value is higher than the observed value in contrast to the eariler result.

Multi-component dust envelopes around O-rich AGB stars

  • Kwon, Young-Joo;Suh, Kyung-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.30.2-30.2
    • /
    • 2011
  • Dust species in the envelopes around AGB stars would have multiple components rather than a single component. Each dust species may have its own temperature and density structure. We use the radiative transfer code RADMC-3D developed by Dullemond et al. 2011 to model the multi-component dust envelopes around O-rich AGB stars. For reasonable combinations of physical and chemical parameters of the dust envelopes, we use multi-component dust species of silicate, corundum, and water ice. We find that the new model results can explain the observations of O-rich AGB stars better than conventional models.

  • PDF

3D Radiation-Hydrodynimics for surface turbulence of Low-mass Stars

  • Bach, Kiehunn;Kim, Yong-Cheol
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.84.3-84.3
    • /
    • 2019
  • We investigate 3D radiation-hydrodynamics (RHD) for surface convection of the solar-type low-mass stars (M = 0.8, 0.9, and 1.0 Msun). The outer convection zone (CZ) of low-mass stars is an extremely turbulent region composed of partly ionized compressible gases at high temperature. Particularly, the super-adiabatic layer (SAL), the top of the CZ is the transition region where the transport of energy changes drastically from convection to radiation. In order to accurately describe physical processes, a realistic treatment of radiation should be considered as well as convection. As a starting model, the initial stratification in the outer envelope calculated using the solar calibrations in the context of the standard stellar theory. When the numerical fluid becomes thermally relaxed, the thermodynamic structure of the steady-state turbulent flow was explicitly collected. In this presentation, we compared thermodynamic properties of turbulent convection of the solar-type low-mass stars.

  • PDF