• 제목/요약/키워드: stars: massive

검색결과 164건 처리시간 0.023초

Radial distribution of blue straggler stars in Magellanic Cloud clusters

  • Hong, Jongsuk
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.46.2-46.2
    • /
    • 2018
  • Using the high-resolution observational data obtained by the Hubble Space Telescope, we found that there is the diversity of the radial trends of blue straggler stars (BSSs) in young massive clusters (YMCs) in the Large Magellanic Cloud unlike BSSs in old globular clusters usually showing the segregated radial distributions. To understand the dynamical processes that lead to the none-segregated or even inversely-segregated radial distribution of BSSs, we performed direct N-body simulations for YMCs. Our numerical simulations show that the presence of black hole subsystems inside the cluster centre can significantly affect the dynamical evolution of BSSs and eventually lead to none- or inversely-segregated radial distribution of BSSs.

  • PDF

PERIOD VARIATION STUDY OF THE A-TYPE W UMA ECLIPSING BINARY V839 OPH

  • Hanna, Magdy A.
    • 천문학회지
    • /
    • 제43권6호
    • /
    • pp.201-211
    • /
    • 2010
  • We present an analysis of the measurements of mid-eclipse times of V839 Oph, collected from literature sources. Our analysis indicates a period increase of $3.2{\times}10^{-7}$ day/yr. This period increase of V839 Oph can be interpreted in terms of mass transfer of rate $1.76{\times}10^{-7}M_{\odot}/yr$, from the less to the more massive component. The O - C diagram shows a damping sine wave covering two different complete cycles of 36.73 yr and 19.93 yr with amplitudes approximately equal to 0.0080 and 0.0043 day, respectively. The third cycle has to be expected to cover about 13.5 years with lower amplitude than those of the former two cycles. These unequal duration cycles show a non periodicity which may be explained as resulting from either the presence of a tertiary component to the system or cyclic magnetic activity variations due to star spots. For the later mechanism, the obtained characteristics are consistent when applying Applegate (1992) mechanism.

Phosphorus in the Young Supernova Remnant Cassiopeia A

  • Koo, Bon-Chul;Lee, Yong-Hyun;Moon, Dae-Sik;Yoon, Sung-Chul;Raymond, John C.
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.59.1-59.1
    • /
    • 2014
  • Phosphorus ($^{31}P$), which is essential for life, is thought to be synthesized in massive stars and dispersed into interstellar space when these stars explode as supernovae (SNe). Here we report on near-infrared spectroscopic observations of the young SN remnant Cassiopeia A, which show that the abundance ratio of phosphorus to the major nucleosynthetic product iron ($^{56}Fe$) in SN material is up to 100 times the average ratio of the Milky Way, confirming that phosphorus is produced in SNe. The observed range is compatible with predictions from SN nucleosynthetic models but not with the scenario in which the chemical elements in the inner SN layers are completely mixed by hydrodynamic instabilities during the explosion.

  • PDF

On the origin of super-Helium-rich population in the Milky Way bulge

  • Kim, Jaeyeon;Han, Daniel;Lee, Young-Wook
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.66.4-67
    • /
    • 2016
  • Our recent investigation (Lee et al. 2015) suggests that the presence of double red clump in the Milky Way bulge is another manifestation of multiple populations observed in halo globular clusters. The origin of Helium enhancement in the 2nd generation population (G2), however, is not yet fully understood. Here we investigate the origin of this super-Helium-rich population in the framework of self-enrichment scenario. We find that chemical enrichments and pollutions by asymptotic giant branch stars and winds of massive rotating stars can naturally reproduce the observed Helium enhancement. The Helium to metal enrichment ratio appears to be ${\Delta}Y/{\Delta}Z=6$ for G2, while the standard ratio, ${\Delta}Y/{\Delta}Z=2$, is appropriate for G1, which is probably enriched mostly by typeII supernovae.

  • PDF

Evolutionary Models for Helium Giant Stars as Type Ibn Supernova Progenitors.

  • Kim, Jihoon;Yoon, Sung-Chul
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.40.1-40.1
    • /
    • 2018
  • Among Type I supernovae, which show no evidence for hydrogen lines in spectra, Type Ib/c supernovae lack of strong Si absorption lines and are involved with massive progenitors. While strong helium absorption lines are present in Type Ib supernovae, narrow helium emission lines also can appear in some Type Ib that are often called Type Ibn supernovae (SNe Ibn). We consider helium giant stars as a promising progenitor candidate for SN Ibn and suggest the evolutionary scenario through binary systems using MESA code. In our models the range of primary mass is 11 - 20 solar mass, mass ratio is 0.5 - 0.9, and initial period is 1.5 / 1.7 / 2.0 / 2.5 / 3.0 day. In particular, we find that the evolution of the secondary star can overtake the primary through mass transfer from the secondary to the primary, which is so-called 'reverse case B' mass transfer. In such systems the secondary star may undergo a supernova explosion earlier than the primary star. In this case, the primary star evolves towards a single helium giant to become a SN Ibn progenitor. These cases are more frequent in relatively low initial primary mass.

  • PDF

The rise and fall of dusty star formation in (proto-)clusters

  • Lee, Kyung-Soo
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.38.1-38.1
    • /
    • 2019
  • The formation and evolution of galaxies is known to be fundamentally linked to the local environment in which they reside. In the highest-density cluster environments, galaxies tend to be more massive, have lower star formation rates and dust content, and a higher fraction have elliptical morphologies. The stellar populations of these cluster galaxies are older implying that they formed the bulk of their stars much earlier and have since evolved passively. Quantifying the specific environmental factors that contribute to shaping cluster galaxies over the Hubble time and measuring their early evolution can only be accomplished by directly tracing the galaxy growth in young clusters and forming porto-clusters. In this talk, I will present a novel technique designed to map out the total dust obscured star formation relative to where existing stars lie. I will demonstrate that this technique can be used 1) to determine if/where/when the activity is heightened or suppressed in dense cluster environment; 2) to measure the total mass and spatial distribution of stellar populations; and 3) to better inform theoretical models. Our ongoing work to extend this analysis out to protoclusters (z~2-4) will be discussed.

  • PDF

New challenges to stellar evolution theory from supernovae

  • Yoon, Sung-Chul
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.38-38
    • /
    • 2014
  • Despite the great success that stellar evolution theory have enjoyed during the last 50 years, new challenges are emerging with recent observations of supernovae: many aspects of supernovae cannot be easily explained by the standard scenarios on supernova progenitors. A few examples include the red supergiant problem - the dearth of Type IIP supernova progenitors with masses higher than about 16 Msun, the non-detection of Type Ib/c supernova progenitors despite very deep searches in pre-supernova optical images, the unexpected blue colors of some Type IIn supernova progenitors, and the exotic stellar explosions of both ultra-faint and super-luminous types that have been only recently discovered. By confronting these observations with new stellar evolution models, we are making significnt progress in better understanding the role of metallicity, rotation and binary interactions for the pre-supernova evolution of massive stars. In this talk, I will give a brief review on the recent observational constraints on supernova progenitors and a progress report on several research projects that deal with pair-instability supernovae from the local Universe, type Ib/c supernovae from massive binary systems, and some peculiar stellar explosions like SN2012Z.

  • PDF

CHEMICAL EVOLUTION IN VeLLOs

  • Lee, Jeong-Eun
    • 천문학회지
    • /
    • 제40권4호
    • /
    • pp.83-89
    • /
    • 2007
  • A new type of object called "Very Low Luminosity Objects (VeLLOs)" has been discovered by the Spitzer Space Telescope. VeLLOs might be substellar objects forming by accretion. However, some VeLLOs are associated with strong outflows, indicating the previous existence of massive accretion. The thermal history, which significantly affects the chemistry, between substellar objects with a continuous low accretion rate and objects in a quiescent phase after massive accretion (outburst) must be greatly different. In this study, the chemical evolution has been calculated in an episodic accretion model to show that CO and $N_2H^+$ have a relation different from starless cores or Class 0/I objects. Furthermore, the $CO_2$ ice feature at $15.2{\mu}m$ will be a good tracer of the thermal process in VeLLOs.

Formation of short-period black hole binary systems from Population III stars as grativational wave radiation sources

  • Lee, Hunchul;Yoon, Sung-Chul
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.59.1-59.1
    • /
    • 2017
  • Massive Population III black hole binary systems are one of the suggested candidate sources of the recently detected gravitational wave radiation (GWR). GWR detection from a black hole binary system requires a sufficiently short orbital separation at the time of their formation, such that they would undergo coalescence within the Hubble time. This condition cannot be simply fulfilled by a short initial period, because binary interactions such as mass transfer and common envelope evolution can largely change the orbital parameters and the masses of stellar components. Here, we discuss the possibility of black hole binary mergers from massive Pop III binary systems, using a new grid of Pop III binary evolutionary models with various initial primary masses ($20M_{\odot}{\leq}M{\leq}100M_{\odot}$) and initial separations, for different initial mass ratios (q = 0.5 - 0.9).

  • PDF

Effects of Black Hole Mass Spectrum in Dynamics of Globular Clusters

  • Park, Dawoo;Kim, Chunglee;Lee, Hyung Mok;Bae, Yeong-Bok
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.80-80
    • /
    • 2014
  • Dynamics of a globular cluster (GC) is dominated by behaviors of high-mass components such as neutron stars or black holes (BHs). Massive components in a cluster are segregated into the cluster core and some of them are ejected by dynamical interactions. In this study, we perform N-body simulations of GCs adapting two BH mass components, $10M_{\odot}$ and $20M_{\odot}$. Previous studies which mostly assume single-mass BHs suggested a rapid collapsing and escaping of BHs. A cluster with a two-component BH mass spectrum, however, retains a large fraction of $10M_{\odot}$ BHs longer. In addition to their roles in cluster dynamics, massive components in binaries are one of important sources of gravitational waves (GWs). We investigate properties of BH binaries escaped from the cluster and discuss their implications for GW detection.

  • PDF