• Title/Summary/Keyword: stars: massive

Search Result 164, Processing Time 0.025 seconds

[Fe II] 1.64 ${\mu}m$ images of Jets and Outflows from Young Stellar Objects in the Carina Nebula

  • Shinn, Jong-Ho;Pyo, Tae-Soo;Lee, Jae-Joon;Lee, Ho-Gyu;Koo, Bon-Chul;Sung, Hwan-Kyung;Moon, Dae-Sik;Kyeong, Jae-Mann;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.74.2-74.2
    • /
    • 2012
  • We present [Fe II] 1.64 ${\mu}m$ imaging observations for jets and outflows from young stellar objects over the northern part (-24'${\times}$45') of the Carina Nebula, a typical evolved massive star forming region. The observations were performed with IRIS2 of Anglo-Autralian Telescope and the seeing was -1.5". Several jets and outflows features are detected at seven different regions, and one new Herbig-Haro Object is identified. The [Fe II] features have knotty and elongated shapes, and distribute around the triangular area formed by the star clusters Tr 14, Tr 15, and Tr 16, which contain many massive stars. The [Fe II] feature shows a highest detection rate (3.2 %) for the earliest stage YSOs, and the rate decreases as the stage evolves. The low detection rate (1.5 %) of [Fe II] features from the numerous YSOs seem to be related with the severe radiation environment of the Carina Nebula. The outflow rate shows reasonable relations with the physical parameters of the corresponding YSOs-derived from the SED fitting-such as the accretion luminosity, the stellar mass, the stellar age, the disk accretion rate, etc.

  • PDF

The first photometric analysis of the close binary system NSVS 1461538

  • Kim, Hyoun-Woo;Kim, Chun-Hwey
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.41.2-41.2
    • /
    • 2016
  • The follow-up BVRI photometric observations of NSVS 1461538, which was discovered as an $Algol/{\beta}$ Lyr eclipsing variable by Hoffman, Harrison & McNamara (2009), were performed for three years from 2011 to 2013 by using the 61-cm telescope and CCD cameras of Sobaeksan Optical Astronomy Observatory (SOAO). New light curves have deep depths both of the primary and secondary eclipses, rounded shapes outside eclipses and a strong O'Connell effect, indicating that NSVS 1461538 is a typical W UMa close binary system rather than an $Algol/{\beta}$ Lyr type binary star. A period study with all the timings shows that the orbital period may vary in a sinusoidal way with a period of about 5.6 yr and a small semi-amplitude of about 0.008 d. The cyclical period variation was interpreted as a light-time effect due to a tertiary body with a minimum mass of $0.66M{\odot}$. The first photometric solution with the Wilson-Devinney binary model shows that the system is a W-subtype contact binary with the mass ratio ($q=m_c/m_h$) of 3.46, orbit inclination of 85.6 deg and fill-out factor of 30%. From the existing empirical relationship between parameters, the absolute dimension was estimated. The masses and radii of the component stars are $0.28M{\odot}$ and $0.71R{\odot}$ for the less massive but hotter primary star, respectively, and $0.96M{\odot}$ and $1.21R{\odot}$ for the more massive secondary, respectively. Possible evolution of the system is discussed in the mass-radius and the mass-luminosity planes.

  • PDF

Early-type host galaxies of Type II and Ib supernovae

  • Suh, Hye-Won;Yoon, Sung-Chul;Jeong, Hyun-Jin;Yi, Suk-Young K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • Recent studies find that some early-type galaxies host Type II or Ibc supernovae (SNe II, Ibc). This may imply recent star formation activities in these SNe host galaxies, but a massive star origin of the SNe Ib so far observed in early-type galaxies has been questioned because of their intrinsic faintness and unusually strong Ca lines shown in the nebular phase. To address the issue, we investigate the properties of early-type SNe host galaxies using the data with Galaxy Evolution Explorer (GALEX) ultraviolet photometry and the Sloan Digital Sky Survey optical data. Our sample includes eight SNe II and one peculiar SN Ib (SN 2000ds) host galaxies as well as 32 SN Ia host galaxies. The host galaxy of SN 2005cz, another peculiar SN Ib, is also analyzed using the GALEX data and the NASA/IPAC Extragalactic Database optical data. We find that the NUV?optical colors of SN II/Ib host galaxies are systematically bluer than those of SN Ia host galaxies, and some SN II/Ib host galaxies with NUV - r colors markedly bluer than the others exhibit strong radio emission. We perform a stellar population synthesis analysis and find a clear signature of recent star formation activities in most of the SN II/Ib host galaxies. Our results generally support the association of the SNe II/Ib hosted in early-type galaxies with core collapse of massive stars. We briefly discuss implications for the progenitors of the peculiar SNe Ib 2000ds and 2005cz.

  • PDF

Radial Velocity and Photometric Study of the Long Period Interaction Binary AQ Cas

  • Lee, Yong-Sam-;Chun, Yong-Woo;Jeong, Jang-Hae
    • Bulletin of the Korean Space Science Society
    • /
    • 1992.10a
    • /
    • pp.15-15
    • /
    • 1992
  • AQ Cassiopeiae (BD+61`0242, uv=10, Sp=B3+Bg) is a totally eclipsing binary system with the obital period of about 12 days. 71 was observed for 15 nights in 1985 with the1.8-m telescope at the DAO, employing a Reticon and a three-stage image tube attached to the spectrograph. And also, photometric observations of AQ Cas had been made inUBv for six years from 1982 to 1988 at Yonsei University Observatory(YUO). This work includes UBV observations obtained at YUO as a part of The Ten-Year Observing Program(1982-1992). Double lined radial, velocity curves and Ufv light curves of AQC as are constructed. The light curves and radial velocity curves show a strong evidence of circumstellar matter or mass stream. It is clear at the phases of just outside externaleclipse contacts, particularly at phase 0.8-0.9, shown in Figures 1 and 2. A solution by combining the radial velocity and photometric curves of the binary was obtained with the Wilson-Devinney Code. We found that the system is semi-detached with the coolcomponent filling its Roche lobe. The absolute dimensions of AQ Cas are calculated. The result shows that this system consists of two massive and subgiant stars.

  • PDF

Instability of Magnetized Ionization Fronts

  • Kim, Woong-Tae;Kim, Jeong-Gyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.78.1-78.1
    • /
    • 2014
  • An ionization front (IF) surrounding an H II region is a sharp interface through which a cold neutral gas makes transition to a warm ionized phase by absorbing UV photons from central massive stars. We investigate the structure and instability of a plane-parallel D-type IF threaded by magnetic fields parallel to the front. We find that magnetic fields increase the maximum propagation speed of the IFs, while reducing the expansion factor, defined as the density ratio of neutral to ionized phases. IFs become unstable to distortional perturbations due to gas expansion across the fronts, exactly analogous to the Darrieus-Landau instability of ablation fronts in terrestrial flames. The growth rate of the IF instability is proportional linearly to the perturbation wavenumber as well as the upstream flow speed. The IF instability is stabilized by gas compressibility and becomes completely quenched when the front is D-critical. The instability is also stabilized by magnetic pressure when the perturbations propagate in the direction perpendicular to the fields. When the perturbations propagate in the direction parallel to the fields, on the other hand, it is magnetic tension that reduces the growth rate, completely suppressing the instability when ${\beta}$ < 1.5, with ${\beta}$ denoting the square of the ratio of the sound speed to the Alfven speed in the pre-IF region. When the front experiences an acceleration, the IF instability cooperates with the Rayleigh-Taylor instability to make the front more unstable. We discuss potential effects of IF instability on the evolution and dynamics of IFs in the interstellar medium.

  • PDF

Discovery of an Ultra Faint Dwarf Galaxy in the Virgo Core

  • Jang, In Sung;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.51.2-51.2
    • /
    • 2014
  • Ultra faint dwarf galaxies (UFDs) are larger but fainter than globular clusters, being the faintest galaxies in the universe. They have been found only in the Local Group. We report the discovery of an UFD in the intracluster field of the Virgo cluster (Virgo UFD1). It is located near the core of Virgo cluster, and far from any massive galaxies. The color magnitude diagram of resolved stars in Virgo UFD1 shows narrow, metal poor red giant branch (RGB), which is very similar to the UFDs in the Local Group. by comparing RGB in this galaxy with 12 Gyr stellar isochrones, we estimate its distance, $d=16.4{\pm}0.4$ Mpc and mean metallicity, $[Fe/H]=-2.4{\pm}0.4$. We derive its integrated photometric properties and structural parameters : V-band absolute magnitude of $MV=-6.3{\pm}0.2$, effective radius of $84{\pm}7pc$, and central surface brightness of ${\mu}V,0=26.49{\pm}0.09$ mag arcsec-2. These properties are similar to these of Local Group UFDs. Virgo UFD1 is the first UFD discovered beyond the Local Group. These results indicate that it may be a fossil remnant of the first galaxies.

  • PDF

Near-IR Polarization of the Northeastern Region of the Large Magellanic Cloud

  • Kim, Jaeyeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.42.2-42.2
    • /
    • 2017
  • The Large Magellanic Cloud (LMC) is a unique target to study the detail structures of molecular clouds and star-forming regions, due to its proximity and face-on orientation from us. Most part of the astrophysical subjects for the LMC have been investigated, but the magnetic field is still veiling despite its role in the evolution of the interstellar medium (ISM) and in the main force to influence the star formation process. Measuring polarization of the background stars behind interstellar medium allows us to describe the existence of magnetic fields through the polarization vector map. In this presentation, I introduce the near-infrared polarimetric results for the $39^{\prime}{\times}69^{\prime}$ field of the northeastern region of the LMC and the N159/N160 star-forming complex therein. The polarimetric observations were conducted at IRSF/SIRPOL 1.4 m telescope. These results allow us to examine both the global geometry of the large-scale magnetic field in the northeastern region and the close structure of the magnetic field in the complex. Prominent patterns of polarization vectors mainly follow dust emission features in the mid-infrared bands, which imply that the large-scale magnetic fields are highly involved in the structure of the dust cloud in the LMC. In addition, local magnetic field structures in the N159/N160 star-forming complex are investigated with the comparison between polarization vectors and molecular cloud emissions, suggesting that the magnetic fields are resulted from the sequential formation history of this complex. I propose that ionizing radiation from massive stellar clusters and the expanding bubble of the ionized gas and dust in this complex probably affect the nascent magnetic field structure.

  • PDF

Exploring the temporal and spatial variability with DEEP-South observations: reduction pipeline and application of multi-aperture photometry

  • Shin, Min-Su;Chang, Seo-Won;Byun, Yong-Ik;Yi, Hahn;Kim, Myung-Jin;Moon, Hong-Kyu;Choi, Young-Jun;Cha, Sang-Mok;Lee, Yongseok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.70.1-70.1
    • /
    • 2018
  • The DEEP-South photometric census of small Solar System bodies is producing massive time-series data of variable, transient or moving objects as a by-product. To fully investigate unexplored variable phenomena, we present an application of multi-aperture photometry and FastBit indexing techniques to a portion of the DEEP-South year-one data. Our new pipeline is designed to do automated point source detection, robust high-precision photometry and calibration of non-crowded fields overlapped with area previously surveyed. We also adopt an efficient data indexing algorithm for faster access to the DEEP-South database. In this paper, we show some application examples of catalog-based variability searches to find new variable stars and to recover targeted asteroids. We discovered 21 new periodic variables including two eclipsing binary systems and one white dwarf/M dwarf pair candidate. We also successfully recovered astrometry and photometry of two near-earth asteroids, 2006 DZ169 and 1996 SK, along with the updated properties of their rotational signals (e.g., period and amplitude).

  • PDF

Broadband Photometric Study of Two Open Clusters: Westerlund 1 and IC 1848

  • Lim, Beomdu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.83.1-83.1
    • /
    • 2014
  • Open clusters consisting of a co-spatial and coeval population with a similar chemical composition are a superb astrophysical test bed in both stellar and galactic astronomy. We introduce not only several scientific issues relating to these objects but also comprehensive studies of the two young open clusters Westerlund 1 and IC 1848 formed in extremely different star-forming conditions. Westerlund 1 is known as the most massive starburst cluster in the Galaxy. Located in the Scutum-Centaurus spiral arm, the cluster is relatively close to the Galactic Center. The apparent surface density is very high. On the other hand, IC 1848 is a core cluster within the large-scale star-forming region W5 lying in the Perseus arm. Unlike Westerlund 1, IC 1848 with a putatively low metallicity exhibits a low surface density. We present the fundamental parameters of those young clusters, such as reddening, distance, and age, obtained from the broadband photometric analysis. The stellar initial mass function (IMF) of the clusters is used to investigate the effects of the different star-forming conditions on the star formation activity. With the results of previous studies for several young open clusters, our preliminary results support a possibility that star formation activity may be affected by the environmental factors or the initial condition of natal clouds. In addition, we shortly discuss the age scale and spread of pre-main sequence stars to understand the formation processes of star clusters.

  • PDF

ON THE FORMATION OF GIANT ELLIPTICAL GALAXIES AND GLOBULAR CLUSTERS

  • LEE MYUNG GYOON
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.189-212
    • /
    • 2003
  • I review the current status of understanding when, how long, and how giant elliptical galaxies formed, focusing on the globular clusters. Several observational evidences show that massive elliptical galaxies formed at z > 2 (> 10 Gyr ago). Giant elliptical galaxies show mostly a bimodal color distribution of globular clusters, indicating a factor of $\approx$ 20 metallicity difference between the two peaks. The red globular clusters (RGCs) are closely related with the stellar halo in color and spatial distribution, while the blue globular clusters (BGCs) are not. The ratio of the number of the RGCs and that of the BGCs varies depending on galaxies. It is concluded that the BGCs might have formed 12-13 Gyr ago, while the RGCs and giant elliptical galaxies might have formed similarly 10-11 Gyr ago. It remains now to explain the existence of a gap between the RGC formation epoch and the BGC formation epoch, and the rapid metallicity increase during the gap (${\Delta}t{\approx}$ 2 Gyr). If hierarchical merging can form a significant number of giant elliptical galaxies > 10 Gyr ago, several observational constraints from stars and globular clusters in elliptical galaxies can be explained.