• Title/Summary/Keyword: stars: evolution

Search Result 297, Processing Time 0.025 seconds

High resolution Infrared spectroscopy of Planetary Nebula with IGRINS

  • Yu, Young Sam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.93.2-93.2
    • /
    • 2014
  • Planetary nebulae (PN) are the last stages of evolution of intermediate mass (1-8 Msolar) stars. Their shapes are thought to result from interactions between the present-day, fast (emerging white dwarf) and previously ejected, slow (red giant) stellar winds. The observation of young, bright PN, NGC7027 and BD+30 3639, was made on July 7, 2014 using the 2.7m Harlan J. Smith telescope at the McDonald Observatory. IGRINS with high spatial (0.27") and high spectral ($7.5km\;s^{-1}$) resolution will provide more nebular lines and excitation/abundances to constrain the morphology and kinematics of the Nebula and the PDRs. Combined with other archival data (X-ray, 2MASS, WISE, Spitzer, Herschel) for PN, high-resolution IR spectroscopy will yield insight into poorly understood aspects of PN morphologies and the late stages of binary star evolution.

  • PDF

Hierarchical Structure of Star-Forming Regions in the Local Group

  • Kang, Yongbeom;Bianchi, Luciana;Kyeong, Jaeman;Jeong, Hyunjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.60.2-60.2
    • /
    • 2014
  • Hierarchical structure of star-forming regions is widespread and may be characteristic of all star formation. We studied the hierarchical structure of star-forming regions in the Local Group galaxies (M31, M33, Phoenix, Pegasus, Sextans A, Sextans B, WLM). The star-forming regions were selected from Galaxy Evolution Explorer (GALEX) far-UV imaging in various detection thresholds for investigating hierarchical structure. We examined the spatial distribution of the hot massive stars within star-forming regions from Hubble Space Telescope (HST) multi-band photometry. Small compact groups arranged within large complexes. The cumulative mass distribution follows a power law. The results allow us to understand the hierarchical structure of star formation and recent evolution of the Local Group galaxies.

  • PDF

An Ultraviolet Study of Star-Forming Regions in M33

  • Kang, Yongbeom;Rey, Soo-Chang;Bianchi, Luciana
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.62.3-63
    • /
    • 2016
  • We studied the young stellar populations of star-forming (SF) regions in M33 based on the Galaxy Evolution Explorer (GALEX) ultraviolet (UV) imaging data. The SF regions are defined from far-UV data with various thresholds. We examined the reddening and spatial distribution of hot massive stars within SF regions from Hubble Space Telescope multi-band survey and Local Group Galaxy Survey (LGGS) data. The H-alpha sources from the LGGS are used for comparing with the spatial distribution of SF regions. The GALEX UV flux measurements of SF regions are used to derive their ages and masses. We also estimated the size and density of SF regions. The younger and compact SF regions are often arranged within older and sparser SF complexes. The results allow us to understand the hierarchical star formation and recent evolution of M33.

  • PDF

SOME CURRENT ISSUES IN GALAXY FORMATION

  • Silk, Joseph
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.3
    • /
    • pp.53-58
    • /
    • 2010
  • The origin of the galaxies represents an important focus of current cosmological research, both observational and theoretical. Its resolution involves a comprehensive understanding of star formation and evolution, galaxy dynamics, supermassive black holes, and the cosmology of the very early universe. In this paper, I will review our current understanding of galaxy formation and review some of the challenges that lie ahead. Specific issues that I address include the galaxy luminosity function, feedback by supernovae and by AGN, and downsizing. I argue that current evidence favours two distinct modes of star formation in the early universe, in order to account for the origin of disk and massive spheroidal galaxies. However perhaps the most urgent need is for a robust theory of star formation.

CHEMICAL EVOLUTION IN VeLLOs

  • Lee, Jeong-Eun
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.83-89
    • /
    • 2007
  • A new type of object called "Very Low Luminosity Objects (VeLLOs)" has been discovered by the Spitzer Space Telescope. VeLLOs might be substellar objects forming by accretion. However, some VeLLOs are associated with strong outflows, indicating the previous existence of massive accretion. The thermal history, which significantly affects the chemistry, between substellar objects with a continuous low accretion rate and objects in a quiescent phase after massive accretion (outburst) must be greatly different. In this study, the chemical evolution has been calculated in an episodic accretion model to show that CO and $N_2H^+$ have a relation different from starless cores or Class 0/I objects. Furthermore, the $CO_2$ ice feature at $15.2{\mu}m$ will be a good tracer of the thermal process in VeLLOs.

Populations Accessible to Gravitational Wave and Multi-Messenger Astronomy Within 10 Years

  • Kim, Chunglee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.58.1-58.1
    • /
    • 2019
  • Gravitational-wave (GW) sources for the next decades would be in majority binaries consisting of neutron stars and/or black holes reside in the extragalactic environment. For example, GW170817 was the first extragalactic neutron star - neutron star binary found by GW observations and it was proved the power of multi-messenger astronomy (MMA) including the KMTNet observations. With the ever increased sensitivity, the $3^{rd}$ observation run (O3) led by the advanced LIGO and advanced Virgo this year aims to search for more 'standard' populations as well as 'exotic' ones expected by stellar evolution. I will present highlights of on-going efforts by researchers in Korea and those in abroad for estimating physical parameters of a source. Mass, spin, distance, and location are prerequisite information to constrain theoretical understanding of the source formation and evolution. Furthermore, these information are to be shared with the international community for follow-up multi-messenger observations. I will present the observational accuracy expected for the future GW observations and discuss their implications. If time allows, I will make a few remarks on prospects of O3 with KAGRA collaborations, which many domestic researchers are closely involved in.

  • PDF

Numerical study on the evolution of the spin of spiral galaxies

  • Hwang, Jeong-Sun;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.73.1-73.1
    • /
    • 2019
  • We investigate the evolution of the galactic spin of spiral galaxies in various dynamical situations using the N-body/SPH simulations. To do this we first construct a Milky Way-like galaxy model. Then we perform both prograde and retrograde encounters between the spiral galaxy pair. We also conduct a simulation with our galaxy model in isolation for comparison. We find that the circular motion of the disk stars in the inner region of the galaxy decrease clearly when the galaxy experiences strong prograde interactions. Such decrease has not found when the galaxy experiences weak or no interactions. We compare our simulation results with recent observational studies on the galactic spins.

  • PDF

MASSIVE BLACK HOLE EVOLUTION IN RADIO-LOUD ACTIVE GALACTIC NUCLEI

  • FLETCHER ANDRE B.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.177-187
    • /
    • 2003
  • Active galactic nuclei (AGNs) are distant, powerful sources of radiation over the entire electromagnetic spectrum, from radio waves to gamma-rays. There is much evidence that they are driven by gravitational accretion of stars, dust, and gas, onto central massive black holes (MBHs) imprisoning anywhere from $\~$1 to $\~$10,000 million solar masses; such objects may naturally form in the centers of galaxies during their normal dynamical evolution. A small fraction of AGNs, of the radio-loud type (RLAGNs), are somehow able to generate powerful synchrotron-emitting structures (cores, jets, lobes) with sizes ranging from pc to Mpc. A brief summary of AGN observations and theories is given, with an emphasis on RLAGNs. Preliminary results from the imaging of 10000 extragalactic radio sources observed in the MITVLA snapshot survey, and from a new analytic theory of the time-variable power output from Kerr black hole magnetospheres, are presented. To better understand the complex physical processes within the central engines of AGNs, it is important to confront the observations with theories, from the viewpoint of analyzing the time-variable behaviours of AGNs - which have been recorded over both 'short' human ($10^0-10^9\;s$) and 'long' cosmic ($10^{13} - 10^{17}\;s$) timescales. Some key ingredients of a basic mathematical formalism are outlined, which may help in building detailed Monte-Carlo models of evolving AGN populations; such numerical calculations should be potentially important tools for useful interpretation of the large amounts of statistical data now publicly available for both AGNs and RLAGNs.

Distribution of Baryonic Matter in Dark Matter Halos: Effect of Dynamical Friction

  • Bae, Yeong-Bok;Lee, Hyung-Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2011
  • We studied the evolution of the two mass components system with NFW initial density distribution by direct integration of the Fokker-Planck equations. The low mass component is regarded the dark matter particles while the high mass component is assumed to be conglomerates of baryonic matter in order to depict the 'stars'. While the true mass ratio between these two types of particles should be extremely large, our adopted mass ratio is about 1000 beyond which the dynamical evolution and density distribution tend to converge. Since the dynamical evolution is dominated by the dynamical friction, the high mass component slowly moves toward the central part, and eventually undergoes the core collapse. The system reaches the core-collapse at about $7.1{\times}10^{-3}$ $t_{fh}$ in NFW models, where $t_{fh}$is the dynamical friction time at half-mass radius. The distribution of the high mass component is well fitted by the Sersic profiles or modified Hubble profile when the mass segregation is established. From these results, the surface brightness of elliptical galaxies may be explained by the high mass component experiencing dynamical friction by the dark matter particles. In order for the mass segregation to be effective within Hubble time, the mass of the luminous component should be greater than $10^5M_{\bigodot}$.

  • PDF

Analysis of Extension Pattern for Network of Movie Stars from Korea Movies 100 (한국영화 100선에 등장하는 영화배우 네트워크 확장 패턴 분석)

  • Ryu, Jea-Woon;Kim, Hak-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.7
    • /
    • pp.420-428
    • /
    • 2010
  • The advancement of the Science for complex systems enables the analysis of many social networks. We constructed and analyzed a Korean movie star network as one of social networks, based on the 100 Korean movie selection for a main data source. Until now, the research trend has been the structural analysis of network, focused on link numbers, such as degree, betweenness and clustering coefficient. But it is time that the research is not limited by the structural analysis of networks only. Rather, the research goal should be aimed to an information analysis, performed by identifying and analyzing central modules that are regarded as the core of complex networks, using k-core analysis method. In this research, we constructed a network of movie stars who have appeared in 100 Korean movie selection, provided by Korean movie database, also we analyzed its core modules with and without weights, and the trend of seasonal expansion of the network. We expect our findings can be used as the basic data applicable to a model for understanding of the expansion and evolution of networks.