• Title/Summary/Keyword: stars: binary

Search Result 179, Processing Time 0.029 seconds

STARSPOT MODEL OF RS CVn TYPE BINARY SZ PSC (RS CVn형 쌍성 SZ Psc의 흑점 모델)

  • 강영운
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.189-198
    • /
    • 2000
  • The emission lines of the ultraviolet region and the light curves of the optical region have been analyzed to investigate the distorted light curves of SZ Psc. The Mg II emission lines of the IUE spectra confirmed that the chromospheric activity of SZ Psc occurs on the K1 IV star. The distorted light curves in the optical region have been analyzed by the spot model where the spots are on the K1 IV star as the result of the chromospheric activity. The complete photometric solution could be deduced for SZ Psc by the good fitness with the spot model.

  • PDF

THE REFLECTION EFFECT ON THE ECLIPSING BINARY BY THE WILSON AND DEVINNEY'S MODEL AND RUSSELL AND RUSSELL AND MERRILL'S MODEL (Wilson과 Devinney의 모델과 Russell과 Merrill의 모델에 의한 식쌍성의 반사 효과)

  • 최성희;강영운
    • Journal of Astronomy and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.30-40
    • /
    • 1992
  • The reflection effect on three types of eclipsing binaries has been analyzed based on the Wilson and Devinney's model and Russell and Merrill's model. The reflection effect was displayed on the theoretical light curves for the various conditions using the Wilson and Devinney's light curve program. Two models were compared after the rectifing the theoretical light curves including the reflection effect with the Russell and Merrill's method. The result shows that two models have an agreement on the reflection effect just in cases of the small difference in temperature adn albedo between two stars in the system.

  • PDF

BVRI PHOTOMETRY OF VV CEPHEI

  • Nha, Il-Seong;Im, Hong-Seo;Lee, Yong-Sam;Jeong, Jang-Hae
    • Journal of Astronomy and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.89-96
    • /
    • 1992
  • UBV observations of VV Cep were made in 1988-1992 as a part of the Ten-year Observing Program for Long Period Eclipsing Binary Stars(1982-1992) at Yonsei University Observatory. In addition to these the observations in the longer passbands in R and I are also made in the 1991-1992 season at the same observatory. Atmospheric extinction coefficinets determined by a comparison star 20 Cap for B and V each night have been deduced a linear relation, $K_B$=0.159+1.066kV. In this paper, light curves of this star in BVRI passbands for the 1991-1992 season only are presented. Two periodic light variations of both long-term and short-term are found as for 90 days and 20 days, respectively.

  • PDF

LIGHT CURVE ANALYSIS OF SAO23229 (SAO23229 광동곡선의 분석)

  • 김호일;이우백;성언창;김천휘
    • Journal of Astronomy and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.36-43
    • /
    • 1993
  • We have made UBV light curves of a newly discovered eclipsing binary, SAO23229 at Sobaeksan Astronomy Observatory. We determined a minimum light time of HJD2448636.1170$pm$0.0005 that is 3 minimum later than predicted time, and found a peculiar light variation at phase 0.75 that may not be secondary eclipse. Orbital period of SAO23229 would be 4.2 days rather than 2.1 days. Our analysis of the light curves shows that SAO23229 has a detached configuration consisting of two almost identical F type main sequence stars.

  • PDF

White Dwarfs in Cataclysmic Variable Stars: Surface Temperatures and Evolution

  • Sion, Edward M.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.169-173
    • /
    • 2012
  • A summary is presented of what is currently known about the surface temperatures of accreting white dwarfs (WDs) detected in non-magnetic and magnetic cataclysmic variables (CVs) based upon synthetic spectral analyses of far ultraviolet data. A special focus is placed on WD temperatures above and below the CV period gap as a function of the orbital period, $P_{orb}$. The principal uncertainty of the temperatures for the CV WDs in the $T_{eff}-P_{orb}$ distribution, besides the distance to the CV, is the mass of the WD. Only in eclipsing CV systems, an area of eclipsing binary studies, which was so central to Robert H. Koch's career, is it possible to know CV WD masses with high precision.

Gravitational-Wave Astronomy (중력파 천문학)

  • Kim, Chunglee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.31.3-31.3
    • /
    • 2016
  • Exploring a universe with gravitational waves (GWs) was only theoretical expectation for long time. In September 2015, the Laser Interferometer GW Observatory (LIGO) first detected GWs emitted from the collision of two stellar-mass black holes in cosmological distance (1.3 billion light years) on Earth. This confirms the existence of black-hole binary mergers, and further, opens a new field of GW astronomy. We begin our discussion with a list of important GW sources that can be detectable on Earth by large-scale laser interferometers such as LIGO. Focusing on compact objects such as neutron stars and black holes, we then discuss possible research in the context of GW astronomy. By coordinating with existing observatories, searching for electromagnetic waves or particles from astronomical objects, around the world, multi-messenger astronomy for the universe's most cataclysmic phenomena (e.g. gamma-ray bursts) will be available in the near future.

  • PDF

Populations Accessible to Gravitational Wave and Multi-Messenger Astronomy Within 10 Years

  • Kim, Chunglee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.58.1-58.1
    • /
    • 2019
  • Gravitational-wave (GW) sources for the next decades would be in majority binaries consisting of neutron stars and/or black holes reside in the extragalactic environment. For example, GW170817 was the first extragalactic neutron star - neutron star binary found by GW observations and it was proved the power of multi-messenger astronomy (MMA) including the KMTNet observations. With the ever increased sensitivity, the $3^{rd}$ observation run (O3) led by the advanced LIGO and advanced Virgo this year aims to search for more 'standard' populations as well as 'exotic' ones expected by stellar evolution. I will present highlights of on-going efforts by researchers in Korea and those in abroad for estimating physical parameters of a source. Mass, spin, distance, and location are prerequisite information to constrain theoretical understanding of the source formation and evolution. Furthermore, these information are to be shared with the international community for follow-up multi-messenger observations. I will present the observational accuracy expected for the future GW observations and discuss their implications. If time allows, I will make a few remarks on prospects of O3 with KAGRA collaborations, which many domestic researchers are closely involved in.

  • PDF

A STUDY OF THE RADIAL VELOCITY OF BX ANDROMEDAE (BX ANDROMEDAE의 시선속도 연구)

  • Lee, Chung-Uk;Han, In-Woo;Kim, Kang-Min;Kim, Chun-Hwey
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.263-274
    • /
    • 2004
  • High resolution spectroscopic observations of BX And using the BOBS (Bohyunsan Optical Echelle Spectrograph) of Bohyunsan Optical Astronomical Observatory (BOAO) were performod during 26-27, Feb. 2003. From the observations, we obtained 38 line spectra of BX And which cover all phases except the phase interval between $0.^p1$ and $0.^p3$. Both methods of the CCF (Cross-Correlation Function) and BF (Broadening Function) were used to get the radial velocities of primary and secondary components. Both velocities of the primary and secondary stars were calculated with the BF method while only primary velocities were determined with the CCF. Using new radial velocity curves, the maximum radial velocities of the primary and secondary stars were obtained as $K_1=90.1km/s\;and\;K_2=196.6km/s$, respectively. New absolute dimension of BX And was deduced with the combination of our spectroscopic solution with the photometric one of Bell et al. (1990).

SW Lyncis-Advances and Questions

  • Kim, Chun-Hwey;Kim, Ho-Il;Yoon, Tae-Seog;Han, Won-Yong;Lee, Jae-Woo;Lee, Chung-Uk;Kim, Jin-Hyung;Koch, Robert H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.263-278
    • /
    • 2010
  • Many filtered CCD measures form the basis of six new light curves of the eclipsing system SW Lyn. From these measures and additional observations for eclipse timing, 47 new times of minimum light over the time-interval of about 13 years have been calculated. The complex period variability can be sorted into a linear period improvement with 5.8-year and 33.9-year periodic terms. The shorter cyclic term of these is ascribed to a cool companion of the eclipsing pair but the longer one has no testable interpretation at present. The new light curves are synthesized by the 2003 version of the Wilson-Devinney differential corrections computer code. The results incorporate a source of "third light" which comes from the cool companion star that had been identified by the cycling of the period of the eclipsing pair and also had previously been identified spectroscopically. There is a measure of satisfaction with current understanding of the SW Lyn eclipsing system because of consistent syntheses of all historical light curves. This agreeable convergence, however, comes partly at the expense of an unanticipated temperature of the hot star and of a photospheric spot that has no obvious basis in the detached character modeled for the binary. We offer predictions of changes in the stellar parameters if the modeled detached-configuration should be wrong. The SW Lyn stellar system is still difficult to understand.

A MONTE CARLO STUDY OF FLUX RATIOS OF RAMAN SCATTERED O VI FEATURES AT 6825 Å AND 7082 Å IN SYMBIOTIC STARS

  • Lee, Young-Min;Chang, Seok-Jun;Heo, Jeong-Eun;Hong, Chae-Lin;Lee, Hee-won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.57.3-58
    • /
    • 2016
  • A symbiotic star is a wide binary system consisting of a hot white dwarf and a mass losing giant, where the giant loses its material in the form of a slow stellar wind resulting in accretion onto the white dwarf through gravitational capture. Symbiotic stars are known to exhibit unique spectral features at 6825 and 7082, which are formed from O VI 1032 and 1038 through Raman scattering with atomic hydrogen. In this Monte Carlo study we investigate the flux ratio of 6825 and 7082 in a neutral region with a geometric shape of a slab, cylinder and sphere. By varying the amount of neutral hydrogen parametrized by the column density along a specified direction, we compute and compare the flux ratio of Raman scattered O VI 6825 and 7082. In the column density around 1020 cm-2, flux ratio changes in a complicated way, rapidly decreasing from the optically thin limit to unity the optically thick limit as the column density increases. It is also notable that when the neutral region is of a slab shape with the O VI source outside the slab, the optically thick limit is less than unity, implying a significant fraction of O VI photons escape through Rayleigh scattering near the boundary. We compare our high resolution CFHT data of HM Sge and AG Dra with the data simulated with finite cylinder models confirming that 'S' type symbiotic tend to be characterized by thicker HI region that 'D' type counterparts. It is expected that this study will be useful in interpretation of the clear disparity of Raman O VI 6825 and 7082 profiles, which will shed much light on the kinematics and the asymmetric distribution of O VI material around the hot white dwarf.

  • PDF